
Memvid MCP Server
A Model Context Protocol server that encodes text, PDFs, and other content into video memory format, enabling efficient semantic search and chat interactions with the encoded knowledge base.
README
Memvid MCP Server 🎥
A Model Context Protocol (MCP) server that exposes Memvid video memory functionalities to AI clients. This server allows you to encode text, PDFs, and other content into video memory format for efficient semantic search and chat interactions.
🌟 Features
- Text Encoding: Add text chunks or full text documents to video memory
- PDF Processing: Extract and encode content from PDF files
- Video Memory Building: Generate compressed video representations of your data
- Semantic Search: Query your encoded data using natural language
- Chat Interface: Have conversations with your encoded knowledge base
- Multi-Connection Support: Handle multiple concurrent client connections
- Comprehensive Logging: Detailed logging to stderr for debugging
- Graceful Shutdown: Proper resource cleanup and signal handling
📋 Requirements
- Python 3.10 or higher
- uv package manager
- memvid package
- MCP-compatible client (e.g., Claude Desktop)
🚀 Installation
1. Set up the environment
cd /memvid_mcp_server
uv venv --python 3.12 --seed
source .venv/bin/activate
2. Install dependencies
uv add -e .
H.265 Encoding with Docker
To enable H.265 video compression, you need to build the memvid-h265
Docker container. This container provides the necessary FFmpeg environment for H.265
encoding.
- Navigate to the
memvid
repository root:cd /memvid
- Build the Docker image:
This command builds the Docker image nameddocker build -f docker/Dockerfile -t memvid-h265 docker/
memvid-h265
using theDockerfile
located in thedocker/
directory.
Once the Docker image is built, memvid
will automatically detect and use it when video_codec='h265'
is specified in build_video
.
3. Test the server (optional)
uv run python memvid_mcp_server/main.py
⚙️ Configuration
Claude Desktop Setup
- Copy the example configuration:
cp example_mcp_config.json ~/.config/claude-desktop/config.json
- Or manually add to your Claude Desktop config:
{
"mcpServers": {
"memvid-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/home/ty/Repositories/memvid_mcp_server",
"run",
"python",
"memvid_mcp_server/main.py"
],
"env": {
"PYTHONPATH": "/home/ty/Repositories/memvid_mcp_server",
"PYTHONWARNINGS": "ignore"
}
}
}
}
- Restart Claude Desktop to load the server.
🛠️ Available Tools
get_server_status
Check the current status of the memvid server including version information.
add_chunks
Add a list of text chunks to the encoder.
- chunks: List of text strings to add
add_text
Add a single text document to the encoder.
- text: Text content to add
- metadata: Optional metadata dictionary
add_pdf
Process and add a PDF file to the encoder.
- pdf_path: Path to the PDF file
build_video
Build the video memory from all added content.
- video_path: Output path for the video file
- index_path: Output path for the index file
- codec: Video codec to use ('h265' or 'h264', default: 'h265')
- show_progress: Whether to show progress during build (default: True)
- auto_build_docker: Whether to auto-build docker if needed (default: True)
- allow_fallback: Whether to allow fallback options (default: True)
search_memory
Perform semantic search on the built video memory.
- query: Natural language search query
- top_k: Number of results to return (default: 5)
chat_with_memvid
Have a conversation with your encoded knowledge base.
- message: Message to send to the chat system
📖 Usage Workflow
- Add Content: Use
add_text
,add_chunks
, oradd_pdf
to add your data - Build Video: Use
build_video
to create the video memory representation - Search or Chat: Use
search_memory
for queries orchat_with_memvid
for conversations
🔧 Development
Testing
# Install development dependencies
uv add --dev pytest pytest-asyncio black ruff mypy
# Run tests
uv run pytest
# Format code
uv run black memvid_mcp_server/
uv run ruff check memvid_mcp_server/
Debugging
- Check logs in Claude Desktop:
~/Library/Logs/Claude/mcp*.log
(macOS) or equivalent - Enable debug logging by setting
LOG_LEVEL=DEBUG
in environment - Use
get_server_status
tool to check server state
🔧 Troubleshooting
Common Issues
- JSON Parsing Errors: All output is properly redirected to stderr to prevent protocol interference
- Import Errors: The server gracefully handles missing memvid package with clear error messages
- Connection Issues: Check Claude Desktop logs and use
get_server_status
to diagnose issues - Video Build Failures: Ensure sufficient disk space and valid paths
Logging Configuration
The server implements comprehensive stdout redirection to prevent any library output from interfering with the MCP JSON-RPC protocol:
- All memvid operations are wrapped with stdout redirection
- Progress bars, warnings, and model loading messages are captured
- Only structured JSON responses are sent to Claude Desktop
- All diagnostic information is logged to stderr
Error Messages
- "Memvid not available": Install the memvid package:
uv add memvid
- "Video memory not built": Run
build_video
before searching or chatting - "LLM not available": Expected warning - memvid will work without external LLM providers
📄 License
MIT License - see the LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
📚 Related Projects
- Memvid - The underlying video memory technology
- Model Context Protocol - The protocol specification
- Claude Desktop - MCP-compatible AI client
Generated with improvements for production reliability and MCP best practices.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。