Mendix Context Bridge

Mendix Context Bridge

Enables AI agents to read and understand local Mendix project structure and logic by connecting directly to the .mpr file via MCP. Allows querying microflows, entities, attributes, and modules in read-only mode without requiring cloud access.

Category
访问服务器

README

Mendix MCP Server

Mendix Support TypeScript License MCP

A powerful bridge between Mendix Applications and AI Agents.

The Mendix Local MCP Server is a Model Context Protocol (MCP) server designed to empower AI tools (like Google Antigravity, Claude Desktop, or Cursor) to inspect, read, and understand the structure of Mendix projects.

It operates in a unique Dual Mode:

  1. Shadow SDK (Local): Instant, offline access to .mpr files via direct binary parsing.
  2. Official SDK (Cloud): Deep, accurate inspection using the Mendix Platform SDK.

Why Use This Tool?

Integrating Low-Code platforms with AI agents is notoriously difficult due to proprietary file formats. This tool solves that problem.

  • 🚀 AI-Ready: Exposes complex Mendix logic (Microflows, Domain Models) as clean, AI-readable JSON.
  • ⚡ Blazing Fast (Local): Uses a custom "Shadow SDK" to parse .mpr SQLite databases and .mxunit binaries without waiting for the Model SDK to load.
  • 🛡️ Circular-Safe: Automatically handles the notorious "Circular Structure" errors common in the Mendix SDK by applying a DTO Transformation Layer.
  • 🔒 Privacy-First: Can operate entirely offline (Local Mode), keeping your intellectual property on your machine.

Key Features

  • Project Discovery: Automatically detects Mendix projects in your workspace.
  • Module Browsing: Recursively filters documents (Microflows, Pages) by Module.
  • Shadow Parsing: Extracts metadata from binary blobs without the overhead of the full SDK.
  • Official SDK Integration: Fetches authoritative data from the Mendix Cloud when absolute precision is required.
  • DTO Sanitization: Maps complex Mendix objects to flat, safe JSON for AI consumption.

Installation

Prerequisites

  • Mendix Studio Pro v10.24.13 or newer (Required for the new SQLite-based .mpr format)
  • Node.js (v18 or higher)
  • A local Mendix project (Git-backed or local file)

Setup

  1. Clone the repository:

    git clone https://github.com/YourUsername/mendix-local-mcp.git
    cd mendix-local-mcp
    
  2. Install Dependencies:

    npm install
    
  3. Build the Project:

    npm run build
    

Configuration

To unlock the full power of the Official SDK (Cloud Mode), you must configure your Mendix Personal Access Token (PAT).

Add the server to your MCP Client configuration (e.g., mcp_config.json for Antigravity or Claude Desktop):

{
  "mcpServers": {
    "mendix-local-mcp": {
      "command": "node",
      "args": ["/absolute/path/to/mendix-local-mcp/build/server.js"],
      "env": {
        "MENDIX_TOKEN": "your_generated_pat_string",
        "MENDIX_USERNAME": "your_email@domain.com"
      }
    }
  }
}

Note: Generate your PAT in the Mendix Developer Portal with the scope mx:modelrepository:repo:read.


Usage

Once running, the server exposes the following tools to your AI Agent:

Local Mode Tools (Offline)

These tools use the "Shadow SDK" and do not require a token.

  • list_local_documents(module_name?)
    • Lists all documents in the project. Optional filter by module.
  • get_domain_model(module_name)
    • Extracts a simplified Domain Model using parsing.
  • inspect_local_microflow(microflow_name)
    • Reads binary definitions to show microflow logic.
  • inspect_database_schema(table_name?)
    • (Debug) Inspects the internal .mpr SQLite schema.

Cloud Mode Tools (Online)

These tools use the Official Mendix SDK.

  • get_module_entities_sdk(module_name, project_id, branch?)
    • Recommended for Refactoring. Fetches a 100% accurate, sanitized JSON representation of the Domain Model from the Mendix Cloud.

Project Structure

mendix-local-mcp/
├── src/
│   ├── index.ts          # Main entry point (SDK implementation)
│   ├── server.ts         # MCP Server definition and Tool handlers
│   ├── mprReader.ts      # Shadow SDK: SQLite connection & query logic
│   ├── mendixParser.ts   # Shadow SDK: Binary stream parser for .mxunit
│   └── mappers.ts        # Official SDK: DTO definitions (Entity, Attribute...)
├── build/                # Compiled JavaScript output
├── package.json          # Dependencies & Scripts
└── tsconfig.json         # TypeScript configuration

Contributing

Contributions are welcome! If you'd like to improve the Binary Parser or add more DTO mappers:

  1. Fork the repository.
  2. Create a feature branch (git checkout -b feature/amazing-feature).
  3. Commit your changes (git commit -m 'Add some amazing feature').
  4. Push to the branch (git push origin feature/amazing-feature).
  5. Open a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选