Mercadinho Mercantes Multi-Agent AI Assistant

Mercadinho Mercantes Multi-Agent AI Assistant

A sophisticated MCP server that provides intelligent customer service for a Brazilian retail chain through multiple specialized AI agents that handle product inquiries, sales assistance, customer management, and store operations.

Category
访问服务器

README

Mercadinho Mercantes - Multi-Agent AI Assistant

Python Streamlit MCP OpenAI

A sophisticated multi-agent AI system for Mercadinho Mercantes, a Brazilian retail chain. This system provides intelligent customer service through multiple specialized AI agents that can handle product inquiries, sales assistance, customer management, and store operations.

🏪 About Mercadinho Mercantes

Mercadinho Mercantes is a proud Brazilian retail company with multiple locations across São Paulo and Rio de Janeiro. Our AI assistant system enhances customer experience by providing personalized product recommendations, promotional information, and seamless appointment scheduling.

✨ Features

🤖 Multi-Agent Architecture

  • Reception Agent: Welcomes customers and directs them to appropriate services
  • Sales Agent: Handles product inquiries, recommendations, and sales assistance
  • Customer Maintenance Agent: Manages existing customer accounts and special discounts

🛍️ Core Functionality

  • Product Catalog: Browse available products with pricing and inventory
  • Store Information: Find store locations and contact details
  • Promotional System: Access store-specific promotions and discounts
  • Customer Management: Track customer profiles and loyalty benefits
  • Appointment Scheduling: Book store visits and product reservations
  • Special Discounts: Exclusive offers for registered customers

🛠️ Technical Features

  • MCP Integration: Model Context Protocol for tool calling
  • Streamlit UI: Modern, responsive web interface
  • Real-time Chat: Interactive conversation with AI agents
  • Tool Visualization: Transparent view of AI tool usage
  • Session Management: Persistent conversation history

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher
  • OpenAI API key
  • Git

Installation

  1. Clone the repository

    git clone <repository-url>
    cd mcp_mercadinho
    
  2. Install dependencies

    pip install -r requirements.txt
    
  3. Set up environment variables

    export OPENAI_API_KEY="your_openai_api_key_here"
    

    Or create a .env file:

    echo "OPENAI_API_KEY=your_openai_api_key_here" > .env
    

Running the Application

  1. Start the MCP server (in one terminal):

    mcp run server.py --transport sse
    
  2. Launch the Streamlit client (in another terminal):

    streamlit run chat_multi_agent_client.py
    
  3. Open your browser and navigate to the URL shown in the Streamlit output (typically http://localhost:8501)

🏗️ Architecture

System Components

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Streamlit UI  │◄──►│  Multi-Agent     │◄──►│   MCP Server    │
│   (Frontend)    │    │  System          │    │   (Backend)     │
└─────────────────┘    └──────────────────┘    └─────────────────┘
                              │
                              ▼
                       ┌──────────────────┐
                       │  OpenAI GPT-4    │
                       │  (LLM Backend)   │
                       └──────────────────┘

Agent Roles

Reception Agent (RecepcaoAssistente)

  • Purpose: Initial customer contact and routing
  • Responsibilities:
    • Welcome customers to Mercadinho Mercantes
    • Present company information and website
    • Route customers to appropriate specialized agents
    • Handle general inquiries

Sales Agent (VendasAssistente)

  • Purpose: Product sales and recommendations
  • Responsibilities:
    • Show available products and inventory
    • Provide product recommendations
    • Handle promotional offers
    • Schedule store visits
    • Process sales inquiries

Customer Maintenance Agent (ManutencaoSocioAssistente)

  • Purpose: Existing customer support and loyalty management
  • Responsibilities:
    • Verify customer membership status
    • Apply special discounts for members
    • Handle product reservations
    • Manage customer accounts

Available Tools (MCP Functions)

Tool Description Parameters
get_produtos_disponiveis() Retrieve available products None
get_lojas() Get store locations and information None
get_promocao_por_loja(id_loja) Get promotions for specific store id_loja: int
get_info_cliente(nome) Get customer information nome: str
reservar_pedido_com_desconto() Reserve order with discount id_loja, id_cliente, data_hora
agenda_visita_para_compra() Schedule store visit id_loja, data_hora

📊 Data Structure

Products

  • Categories: Hortifruit, Electronics
  • Information: ID, name, category, price, quantity
  • Examples: Bananas, Apples, PlayStation 5, LED TV

Stores

  • Locations: São Paulo (Parelheiros, Mooca), Guarujá, Santo André, Rio de Janeiro (Ipanema, Nova Iguaçu)
  • Information: ID, name, city, state

Customers

  • Types: Regular customers, Members (with special discounts)
  • Information: ID, name, associated store, discount eligibility

🎯 Usage Examples

Product Inquiry

User: "What products do you have available?"
Agent: [Shows product catalog with prices and availability]

Store Visit Scheduling

User: "I want to visit a store to see the PlayStation 5"
Agent: [Finds nearest store, checks promotions, schedules visit]

Customer Discount Check

User: "My name is John Lennon, do I have any special discounts?"
Agent: [Verifies membership, applies special pricing]

🔧 Configuration

Environment Variables

  • OPENAI_API_KEY: Your OpenAI API key for GPT-4 access

Model Settings

  • Model: GPT-4-1106-preview
  • Temperature: 0 (deterministic responses)
  • Tool Choice: Auto
  • Parallel Tool Calls: Disabled

🛡️ Security Considerations

  • API keys should be stored securely in environment variables
  • Never commit API keys to version control
  • Use .env files for local development
  • Consider implementing rate limiting for production use

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

For support and questions:

🔮 Future Enhancements

  • [ ] Integration with real inventory systems
  • [ ] Payment processing capabilities
  • [ ] Multi-language support (Portuguese/English)
  • [ ] Mobile app development
  • [ ] Advanced analytics and reporting
  • [ ] Integration with CRM systems

Built with ❤️ for Mercadinho Mercantes

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选