Mermaid MCP Server
Enables agents to analyze codebases (local or GitHub) and automatically generate Mermaid diagrams rendered as PNG images via Kroki, providing visual understanding of project structure and flow through file discovery, reading, and diagram generation.
README
mermaid-mcp — one MCP server to diagram any project (Local/GitHub → Mermaid → PNG)
Mermaid MCP Server is an MCP server that helps agents turn large codebases (local folders or GitHub repositories) into Mermaid diagrams and render them as PNG images via Kroki, enabling fast, reliable understanding of a project’s structure and flow.
Why this server
When working with a new codebase, it’s easy to lose time jumping between folders and files. This server provides a clean, tool-based workflow for agents to discover, read, and visualize a project — without guessing paths or inventing structure.
Key features
- Local + GitHub sources: analyze either a local project folder or a remote repository.
- Agent-friendly pipeline:
list_files→read_file→ generate Mermaid →render_mermaid. - Safe local access boundary: local reads are restricted to
PROJECT_ROOT. - Configurable limits: control max file size (
MAX_FILE_CHARS) and output directory (DIAGRAM_OUT_DIR). - Portable output: rendered diagrams are returned as image content and also saved as PNG files.
It exposes three tools:
| Tool | Description |
|---|---|
list_files |
List files from a local folder or a GitHub repo (supports root + glob filtering). |
read_file |
Read file contents (local or GitHub) with a configurable max length. |
render_mermaid |
Render Mermaid text via Kroki and return ImageContent (also saves to disk). |
1) list_files
Returns a list of files for a given source (local / github) with root + glob filtering.
Parameters
source:"local"or"github"root: default"."glob: default"**/*"repo_url: required whensource="github"ref: default"main"recursive: defaulttrue
Example (local)
{
"source": "local",
"root": ".",
"glob": "**/*.py",
"recursive": true
}
Example (github)
{
"source": "github",
"repo_url": "https://github.com/<owner>/<repo>",
"ref": "main",
"root": "src",
"glob": "**/*.py",
"recursive": true
}
2) read_file
Reads file contents (local or GitHub) with a length limit.
Parameters
source:"local"or"github"path: requiredrepo_url: required whensource="github"ref: default"main"max_chars: defaultMAX_FILE_CHARS
Example (local)
{
"source": "local",
"path": "src/server/server.py",
"max_chars": 200000
}
Example (github)
{
"source": "github",
"repo_url": "https://github.com/<owner>/<repo>",
"ref": "main",
"path": "README.md",
"max_chars": 200000
}
3) render_mermaid
Accepts Mermaid text, renders it to a PNG via Kroki, returns ImageContent, and saves the file to disk.
Parameters
mermaid: required (string) — the Mermaid diagram source texttitle: optional (string) — used to derive the output filename (will be sanitized)
Returns
ImageContentcontaining the rendered PNG bytes- Also writes the PNG file to
PROJECT_ROOT/DIAGRAM_OUT_DIR/<filename>.png
Behavior
- If
mermaidis empty → error - File is saved under
DIAGRAM_OUT_DIR(insidePROJECT_ROOT) - Output path: the image is saved to
PROJECT_ROOT/DIAGRAM_OUT_DIR/<filename>.png(default output dir:./diagrams/). - Filename: derived from
title(sanitized to be filesystem-safe). Iftitleis missing, a default name is used. - Name collisions: if
<filename>.pngalready exists, it is overwritten.
Example
{
"mermaid": "flowchart LR\nA[Start] --> B[Build]\nB --> C[Run]\n",
"title": "my_flow"
}
Requirements
- Python 3.10+ (recommended)
- Internet access (for Kroki, and for GitHub when using
githubsource)
Project structure
.
├── README.md
├── pyproject.toml
├── .env.example
├── .gitignore
└── src/
├── config.py # Env/config defaults
├── server/ # MCP server entrypoint
│ └── server.py
├── tools/ # MCP tools (list/read/render)
│ ├── list_files.py
│ ├── read_file.py
│ └── render_mermaid.py
├── sources/ # File sources (local / GitHub) behind one interface
│ ├── local_source.py
│ ├── github_source.py
│ └── source_factory.py
├── core/ # Shared types + interfaces
│ ├── interfaces.py # Source contract used by tools
│ ├── models.py
│ └── errors.py
├── clients/ # API clients (GitHub / Kroki)
│ ├── github_client.py
│ └── kroki_client.py
├── resources/ # Mermaid styles/templates
└── prompts/ # Prompt templates
Installation & Setup
1) Clone the repo
git clone <REPO_URL>
cd <REPO_DIR>
2) Create a venv + install dependencies
Windows (PowerShell):
python -m venv .venv
.\.venv\Scripts\Activate.ps1
pip install .[dev]
Windows (CMD):
python -m venv .venv
.venv\Scripts\activate.bat
pip install .[dev]
macOS/Linux:
python -m venv .venv
source .venv/bin/activate
pip install .[dev]
This installs runtime dependencies and development extras (tests).
3) Configuration (Environment Variables)
You can set env vars in your shell OR in the MCP client config that launches the server.
Required / Recommended
| Variable | Description | Used by |
|---|---|---|
PROJECT_ROOT |
Local project root that the server is allowed to access (security boundary) | local_source |
KROKI_BASE_URL |
e.g. https://kroki.io |
render_mermaid |
KROKI_TIMEOUT |
Kroki request timeout | render_mermaid |
DIAGRAM_OUT_DIR |
Where to save PNGs (must be inside PROJECT_ROOT) |
render_mermaid |
MAX_FILE_CHARS |
Max characters to read from a file (prevents huge reads) | read_file |
Optional
| Variable | Description | Used by |
|---|---|---|
HTTP_VERIFY |
Verify SSL certificates (as needed) | server |
GITHUB_TOKEN |
Recommended to avoid GitHub rate limits; if set, adds an Authorization header |
github_client |
Example (Windows)
set PROJECT_ROOT=.
set KROKI_BASE_URL=https://kroki.io
set KROKI_TIMEOUT=20
set DIAGRAM_OUT_DIR=diagrams
set MAX_FILE_CHARS=200000
Example (macOS / Linux)
export PROJECT_ROOT=.
export KROKI_BASE_URL=https://kroki.io
export KROKI_TIMEOUT=20
export DIAGRAM_OUT_DIR=diagrams
export MAX_FILE_CHARS=200000
4) Run the server (stdio)
python src/server/server.py
Server name: mermaid-mcp
Connect an MCP client (example: Claude Desktop)
Any MCP client that can launch a local stdio server can use this project. Below is an example configuration for Claude Desktop.
1) Locate Claude Desktop config
Claude Desktop stores MCP server definitions in a JSON config file.
Common locations:
- Windows:
%APPDATA%\Claude\claude_desktop_config.json - macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
If the file doesn’t exist yet, create it.
2) Add this server to claude_desktop_config.json
Example (Windows):
{
"mcpServers": {
"mermaid-mcp": {
"command": "C:\\Users\\<YOU>\\path\\to\\repo\\.venv\\Scripts\\python.exe",
"args": [
"C:\\Users\\<YOU>\\path\\to\\repo\\src\\server\\server.py"
],
"env": {
"PROJECT_ROOT": "C:\\Users\\<YOU>\\path\\to\\repo",
"KROKI_BASE_URL": "https://kroki.io",
"KROKI_TIMEOUT": "20",
"DIAGRAM_OUT_DIR": "diagrams",
"MAX_FILE_CHARS": "200000"
}
}
}
}
3) Restart Claude Desktop
After saving the config file, fully close Claude Desktop and reopen it so the server is loaded.
4) Verify tools are available
Open Claude Desktop and check that the server tools appear (e.g. list_files, read_file, render_mermaid).
Using the canonical prompt
This project includes a canonical system prompt used to generate Mermaid diagrams in a consistent, tool-driven way. The prompt is registered on the MCP server under the name generate_mermaid_canonical and is defined in src/prompts/mermaid_prompt.py.
Two common ways to use it:
-
Client-supported prompts (recommended): If your MCP client supports server-side prompts, select the server
mermaid-mcp, pick the prompt namedgenerate_mermaid_canonicalfrom the prompt list, and run it as the agent's system/instruction before invoking the tools. Using the server-registered prompt ensures agents always get the latest prompt text. -
Copy & paste: If your client does not support server-side prompts, open
src/prompts/mermaid_prompt.py, copy the prompt text, and paste it into the agent's system message or save it locally as a preset. Keep in mind you will need to update your local copy when the repository prompt changes.
Notes:
- The canonical prompt enforces strict tool usage and requires the canonical style resource
mermaid://styles/blue-flowchartto be read and embedded unchanged into generated diagrams. - The prompt expects the agent to follow the pipeline:
list_files→read_file→ generate Mermaid →render_mermaid.
Testing
Run the test suite:
pytest -q
End-to-end example:
This is a complete, realistic flow that demonstrates the intended pipeline:
list_files → read_file → generate Mermaid → render_mermaid.
Step 1 — List files from a GitHub repo
{
"source": "github",
"repo_url": "https://github.com/<owner>/<repo>",
"ref": "main",
"root": "src",
"glob": "**/*.py",
"recursive": true
}
Step 2 — Pick a small set of important files (5–12)
Example selection (you choose based on what the repo contains):
src/server/server.pysrc/tools/list_files.pysrc/tools/read_file.pysrc/tools/render_mermaid.pysrc/core/interfaces.pysrc/clients/github_client.pysrc/clients/kroki_client.py
Step 3 — Read the chosen files
{
"source": "github",
"repo_url": "https://github.com/<owner>/<repo>",
"ref": "main",
"path": "src/server/server.py",
"max_chars": 200000
}
Step 4 — Generate Mermaid from what you read
flowchart LR
A[Agent / Client] -->|list_files| B[MCP Server]
A -->|read_file| B
B --> C[Local/GitHub Source]
B --> D[Mermaid generation]
B -->|render_mermaid| E[Kroki API]
E --> F[PNG bytes]
F --> A
Step 5 — Render Mermaid to PNG
{
"mermaid": "<paste the Mermaid from Step 4 (or the generated Mermaid diagram)>",
"title": "repo_to_diagram"
}
Recommended Agent Workflow (Pipeline)
- Use
list_filesto select relevant files - Use
read_fileto fetch real content (don’t guess) - Generate Mermaid from the content
- Use
render_mermaidto produce a PNG
Security & Predictable Behavior
- Local files: no access outside
PROJECT_ROOT - Output directory:
DIAGRAM_OUT_DIRmust be insidePROJECT_ROOT - GitHub: works without a token, but
GITHUB_TOKENis recommended
Troubleshooting
"Missing repo_url for github source"→ you forgotrepo_urlwithsource="github""Missing file path"→ you calledread_filewithoutpath"Access outside project root is not allowed"→ attempted to read outsidePROJECT_ROOT"DIAGRAM_OUT_DIR must be within PROJECT_ROOT"→ output dir is not insidePROJECT_ROOT
Future work (additional sources)
Next, we plan to support more input sources beyond local folders and GitHub, so the server can generate Mermaid diagrams from additional code hosts and content providers (e.g., GitLab, Bitbucket, Azure DevOps Repos, as well as ZIP archives or single files via URL).
This will build on a unified Source abstraction: each new source will implement the same contract (list_files and read_file), while the tools remain unchanged—extending support will require only adding a new source implementation and registering it in the factory.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。