
Mesh Design System MCP Server
A Model Context Protocol server that provides AI assistants access to Mesh Design System components and design tokens, enabling AI-powered development tools to natively understand and utilize these UI components.
README
Mesh Design System MCP Server
A Model Context Protocol (MCP) server that provides AI assistants access to the Mesh Design System components and design tokens.
Overview
This MCP server acts as a bridge between AI-powered development tools (like Cursor.ai) and the Mesh Design System, enabling AI assistants to natively understand and utilize Mesh components.
Features
- Component Discovery: Lists all available UI components in the Mesh Design System
- Component Details: Provides comprehensive information about specific components including props, usage guidelines, and code examples
- Design Tokens: Access to core design tokens (colors, typography, spacing)
- Caching: Intelligent caching system to optimize performance and reduce scraping overhead
- Docker Support: Containerized deployment for easy scaling
MCP Tools
1. listComponents
Returns a list of all available components in the Mesh Design System.
Input: None Output: JSON array of component names
2. getComponentDetails
Fetches detailed information for a specific component.
Input:
componentName
(string): Name of the component
Output: JSON object containing:
name
: Component namedescription
: Component description and usageprops
: Mapping of prop names to their types, descriptions, and defaultscodeExamples
: Array of code snippetsstorybookUrl
: Direct link to Storybook pagedesignGuidance
: Usage guidelines
3. getDesignTokens
Provides core design tokens.
Input:
tokenType
(optional string): Type of tokens ("colors", "typography", "spacing", or "all")
Output: JSON object with design tokens
Installation
Local Development
- Clone the repository:
git clone <repository-url>
cd MeshMCP
- Install dependencies:
pip install -r requirements.txt
- Install Playwright browsers:
playwright install chromium
- Run the server:
python main.py
The server will be available at http://localhost:8000
Docker Deployment
- Build and run with Docker Compose:
docker-compose up --build
- Or build and run manually:
docker build -t mesh-mcp-server .
docker run -p 8000:8000 mesh-mcp-server
API Endpoints
- GET /: Health check endpoint
- GET /tools: Returns the MCP manifest with available tools
- POST /tools/{tool_name}/invoke: Execute a specific MCP tool
Usage with AI Assistants
Cursor.ai Integration
- Configure Cursor.ai to connect to the MCP server endpoint:
http://localhost:8000
- The AI assistant can now use the tools to:
- Discover available Mesh components
- Get detailed component information
- Access design tokens for consistent styling
Example Queries
- "What components are available in the Mesh Design System?"
- "Show me the props for the Button component"
- "What are the available color tokens?"
- "Generate a form using Mesh components"
Configuration
Environment variables:
LOG_LEVEL
: Logging level (default: INFO)CACHE_TTL
: Cache TTL in seconds (default: 3600 for components list, 7200 for details)
Caching
The server implements intelligent caching:
- Components list: 1 hour TTL
- Component details: 2 hours TTL
- Design tokens: 2 hours TTL
- Cache stored in
cache_data/
directory - Automatic cleanup of expired entries
Error Handling
The server includes robust error handling for:
- Component not found scenarios
- Web scraping failures
- Invalid input parameters
- Network timeout issues
Development
Project Structure
MeshMCP/
├── main.py # FastAPI application entry point
├── models/
│ ├── __init__.py
│ └── mcp_models.py # Pydantic models for MCP
├── scrapers/
│ ├── __init__.py
│ └── mesh_scraper.py # Web scraping logic
├── cache/
│ ├── __init__.py
│ └── cache_manager.py # Caching system
├── requirements.txt # Python dependencies
├── Dockerfile # Container configuration
├── docker-compose.yml # Docker Compose setup
└── README.md # This file
Testing
Test the server endpoints:
# Health check
curl http://localhost:8000/
# Get available tools
curl http://localhost:8000/tools
# List components
curl -X POST http://localhost:8000/tools/listComponents/invoke \
-H "Content-Type: application/json" \
-d '{"arguments": {}}'
# Get component details
curl -X POST http://localhost:8000/tools/getComponentDetails/invoke \
-H "Content-Type: application/json" \
-d '{"arguments": {"componentName": "Button"}}'
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。