Metabase MCP Server

Metabase MCP Server

Enables AI assistants to interact with Metabase analytics platform, allowing them to query databases, manage dashboards, execute SQL queries, and organize collections through natural language.

Category
访问服务器

README

Metabase MCP Server

A Model Context Protocol server that integrates AI assistants with Metabase analytics platform.

Overview

This MCP server provides integration with the Metabase API, enabling LLM with MCP capabilites to directly interact with your analytics data, this server acts as a bridge between your analytics platform and conversational AI.

Key Features

  • Resource Access: Navigate Metabase resources via intuitive metabase:// URIs
  • Two Authentication Methods: Support for both session-based and API key authentication
  • Structured Data Access: JSON-formatted responses for easy consumption by AI assistants
  • Comprehensive Logging: Detailed logging for easy debugging and monitoring
  • Error Handling: Robust error handling with clear error messages

Available Tools

The server exposes the following tools for AI assistants:

Data Access Tools

  • list_dashboards: Retrieve all available dashboards in your Metabase instance
  • list_cards: Get all saved questions/cards in Metabase
  • list_databases: View all connected database sources
  • list_collections: List all collections in Metabase
  • list_tables: List all tables in a specific database
  • get_table_fields: Get all fields/columns in a specific table

Execution Tools

  • execute_card: Run saved questions and retrieve results with optional parameters
  • execute_query: Execute custom SQL queries against any connected database

Dashboard Management

  • get_dashboard_cards: Extract all cards from a specific dashboard
  • create_dashboard: Create a new dashboard with specified name and parameters
  • update_dashboard: Update an existing dashboard's name, description, or parameters
  • delete_dashboard: Delete a dashboard
  • add_card_to_dashboard: Add or update cards in a dashboard with position specifications and optional tab assignment

Card/Question Management

  • create_card: Create a new question/card with SQL query
  • update_card_visualization: Update visualization settings for a card

Collection Management

  • create_collection: Create a new collection to organize dashboards and questions

Configuration

The server supports two authentication methods:

Option 1: Username and Password Authentication

# Required
METABASE_URL=https://your-metabase-instance.com
METABASE_USER_EMAIL=your_email@example.com
METABASE_PASSWORD=your_password

# Optional
LOG_LEVEL=info # Options: debug, info, warn, error, fatal

Option 2: API Key Authentication (Recommended for Production)

# Required
METABASE_URL=https://your-metabase-instance.com
METABASE_API_KEY=your_api_key

# Optional
LOG_LEVEL=info # Options: debug, info, warn, error, fatal

You can set these environment variables directly or use a .env file with dotenv.

Deployment with Smithery

To use this MCP server with Claude or other AI assistants, fork this repository and deploy using Smithery:

Steps to Deploy:

  1. Fork this repository to your GitHub account
  2. Go to Smithery and connect with your GitHub account
  3. Deploy the forked repository through Smithery's interface

Claude Desktop Integration

Configure your Claude Desktop to use the Smithery-hosted version:

MacOS: Edit ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: Edit %APPDATA%/Claude/claude_desktop_config.json

API Key Authentication:

{
  "mcpServers": {
    "metabase-mcp": {
      "command": "npx",
      "args": [
        "-y",
        "@smithery/cli@latest",
        "run",
        "YOUR_GITHUB_USERNAME/metabase-mcp-server",
        "--config",
        "{\"metabaseUrl\":\"https://your-metabase-instance.com\",\"metabaseApiKey\":\"your_api_key\",\"metabasePassword\":\"\",\"metabaseUserEmail\":\"\"}"
      ]
    }
  }
}

Username and Password Authentication:

{
  "mcpServers": {
    "metabase-mcp": {
      "command": "npx",
      "args": [
        "-y",
        "@smithery/cli@latest",
        "run",
        "YOUR_GITHUB_USERNAME/metabase-mcp-server",
        "--config",
        "{\"metabaseUrl\":\"https://your-metabase-instance.com\",\"metabaseApiKey\":\"\",\"metabasePassword\":\"your_password\",\"metabaseUserEmail\":\"your_email@example.com\"}"
      ]
    }
  }
}

Security Considerations

  • recommend using API key authentication for production environments
  • Keep your API keys and credentials secure
  • Consider using environment variables instead of hardcoding credentials
  • Apply appropriate network security measures to restrict access to your Metabase instance

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选