MetaTrader 5 MCP Server

MetaTrader 5 MCP Server

Enables AI assistants to interact with the MetaTrader 5 trading platform for market data analysis, placing trades, and managing trading positions. Provides comprehensive access to forex and financial market operations through the Model Context Protocol.

Category
访问服务器

README

MseeP.ai Security Assessment Badge

MetaTrader 5 MCP Server

A Model Context Protocol (MCP) server for MetaTrader 5, allowing AI assistants to interact with the MetaTrader 5 platform for trading and market data analysis.

Features

  • Connect to MetaTrader 5 terminal
  • Access market data (symbols, rates, ticks)
  • Place and manage trades
  • Analyze trading history
  • Integrate with AI assistants through the Model Context Protocol

Installation

From Source

git clone https://github.com/Qoyyuum/mcp-metatrader5-server.git
cd mcp-metatrader5-server
pip install -e .

Requirements

  • uv
  • Python 3.11 or higher
  • MetaTrader 5 terminal installed
  • MetaTrader 5 account (demo or real)

Usage

Running the Server

To run the server in development mode:

uv run mt5mcp dev

This will start the server at http://127.0.0.1:8000 by default.

You can specify a different host and port:

uv run mt5mcp dev --host 0.0.0.0 --port 8080

Installing for Claude Desktop

To install the server for Claude Desktop:

git clone https://github.com/Qoyyuum/mcp-metatrader5-server
cd mcp-metatrader5-server
uv run fastmcp install src\mcp_metatrader5_server\server.py

Check your claude_desktop_config.json file. It should look something like this:

{
  "mcpServers": {
    "MetaTrader 5 MCP Server": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "MetaTrader5",
        "--with",
        "fastmcp",
        "--with",
        "numpy",
        "--with",
        "pandas",
        "--with",
        "pydantic",
        "fastmcp",
        "run",
        "C:\\FULL_PATH_TO\\src\\mcp_metatrader5_server\\server.py"
      ]
    }
  }
}

API Reference

Connection Management

  • initialize(): Initialize the MT5 terminal
  • login(account, password, server): Log in to a trading account
  • shutdown(): Close the connection to the MT5 terminal

Market Data Functions

  • get_symbols(): Get all available symbols
  • get_symbols_by_group(group): Get symbols by group
  • get_symbol_info(symbol): Get information about a specific symbol
  • get_symbol_info_tick(symbol): Get the latest tick for a symbol
  • copy_rates_from_pos(symbol, timeframe, start_pos, count): Get bars from a specific position
  • copy_rates_from_date(symbol, timeframe, date_from, count): Get bars from a specific date
  • copy_rates_range(symbol, timeframe, date_from, date_to): Get bars within a date range
  • copy_ticks_from_pos(symbol, start_pos, count): Get ticks from a specific position
  • copy_ticks_from_date(symbol, date_from, count): Get ticks from a specific date
  • copy_ticks_range(symbol, date_from, date_to): Get ticks within a date range

Trading Functions

  • order_send(request): Send an order to the trade server
  • order_check(request): Check if an order can be placed with the specified parameters
  • positions_get(symbol, group): Get open positions
  • positions_get_by_ticket(ticket): Get an open position by its ticket
  • orders_get(symbol, group): Get active orders
  • orders_get_by_ticket(ticket): Get an active order by its ticket
  • history_orders_get(symbol, group, ticket, position, from_date, to_date): Get orders from history
  • history_deals_get(symbol, group, ticket, position, from_date, to_date): Get deals from history

Example Workflows

Connecting and Getting Market Data

# Initialize MT5
initialize()

# Log in to your trading account
login(account=123456, password="your_password", server="your_server")

# Get available symbols
symbols = get_symbols()

# Get recent price data for EURUSD
rates = copy_rates_from_pos(symbol="EURUSD", timeframe=15, start_pos=0, count=100)

# Shut down the connection
shutdown()

Placing a Trade

# Initialize and log in
initialize()
login(account=123456, password="your_password", server="your_server")

# Create an order request
request = OrderRequest(
    action=mt5.TRADE_ACTION_DEAL,
    symbol="EURUSD",
    volume=0.1,
    type=mt5.ORDER_TYPE_BUY,
    price=mt5.symbol_info_tick("EURUSD").ask,
    deviation=20,
    magic=123456,
    comment="Buy order",
    type_time=mt5.ORDER_TIME_GTC,
    type_filling=mt5.ORDER_FILLING_IOC
)

# Send the order
result = order_send(request)

# Shut down the connection
shutdown()

Resources

The server provides the following resources to help AI assistants understand how to use the MetaTrader 5 API:

  • mt5://getting_started: Basic workflow for using the MetaTrader 5 API
  • mt5://trading_guide: Guide for placing and managing trades
  • mt5://market_data_guide: Guide for accessing and analyzing market data
  • mt5://order_types: Information about order types
  • mt5://order_filling_types: Information about order filling types
  • mt5://order_time_types: Information about order time types
  • mt5://trade_actions: Information about trade request actions

Prompts

The server provides the following prompts to help AI assistants interact with users:

  • connect_to_mt5(account, password, server): Connect to MetaTrader 5 and log in
  • analyze_market_data(symbol, timeframe): Analyze market data for a specific symbol
  • place_trade(symbol, order_type, volume): Place a trade for a specific symbol
  • manage_positions(): Manage open positions
  • analyze_trading_history(days): Analyze trading history

Development

Project Structure

mcp-metatrader5-server/
├── src/
│   └── mcp_metatrader5_server/
│       ├── __init__.py
│       ├── server.py
│       ├── market_data.py
│       ├── trading.py
│       ├── main.py
│       └── cli.py
├── run.py
├── README.md
└── pyproject.toml

Building the Package

To build the package:

python -m pip install build
python -m build

Or using uv:

uv build

Publishing to PyPI

To publish the package to PyPI:

python -m pip install twine
python -m twine upload dist/*

Or using uv:

uv publish

License

MIT

Acknowledgements

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选