MGnify MCP Server

MGnify MCP Server

Enables interaction with MGnify metagenomics resources and tools through the Model Context Protocol. Provides access to MGnify's API for querying and analyzing metagenomic datasets and related biological information.

Category
访问服务器

README

MGnify MCP Server

This repository implements an MCP server that exposes MGnify resources and tools over the Model Context Protocol.

Prerequisites

  • Python 3.10+ recommended (the mcp SDK requires Python >= 3.10). The project metadata uses a marker to skip installing mcp on older Python, but the server cannot run without it.
  • pip >= 21
  • Optional: Docker

Quick start (Python 3.10+)

  1. Create and activate a virtual environment

    • macOS/Linux: python3 -m venv .venv source .venv/bin/activate
    • Windows (PowerShell): py -3.10 -m venv .venv .venv\Scripts\Activate.ps1
  2. Install the package (editable) and dependencies pip install -e .

  3. Configure environment (optional)

    • Copy .env.example to .env and adjust values as needed cp .env.example .env
    • Available variables:
      • MG_BASE_URL: Override the MGnify API base URL (default: https://www.ebi.ac.uk/metagenomics/api/v1)
      • MG_API_KEY: If you have an API token, it will be sent as Bearer auth
      • BIND, PORT: Only used if you enable the HTTP transport in server.py
  4. Optional: Run a local smoke test (no MCP client needed) python scripts/smoke_test.py

    • This will call the MGnify API via the included client to ensure things work locally.
  5. Run the MCP server (stdio transport) mgnify-mcp

    • The server will run over stdio until the client disconnects. Use an MCP-compatible client/tooling to connect.

Using with Claude Desktop (example)

  • Add to your claude_desktop_config.json or the UI where MCP servers are configured: { "mcpServers": { "mgnify": { "command": "/path/to/venv/bin/mgnify-mcp", "env": { "MG_BASE_URL": "https://www.ebi.ac.uk/metagenomics/api/v1" } } } } Replace the command with the absolute path to your venv script.

Alternative: Docker

  • Build docker build -t mgnify-mcp .
  • Run (stdio is not practical via docker). If you want HTTP transport, uncomment serve_http in mgnify_mcp/server.py and rebuild, then: docker run --rm -p 8173:8173 --env-file .env mgnify-mcp Then configure your client to connect to http://localhost:8173

Troubleshooting

  • pip cannot find mcp / versions ignored require Python >=3.10 Upgrade to Python 3.10 or newer. The server relies on the mcp SDK.
  • SSL or network errors to MGnify API Check MG_BASE_URL and your network. The public API should be reachable without an API key; some endpoints may rate-limit.
  • Rate limiting The server surfaces 429 as an error with retry-after from MGnify. Back off and retry.

Development tips

  • Run unit/lint tools you prefer. The code uses Pydantic v2 for input schemas and Requests for HTTP.
  • Entry point is defined in pyproject.toml: mgnify-mcp -> mgnify_mcp.server:main

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选