MinIO MCP Server

MinIO MCP Server

Enables interaction with MinIO object storage through a standardized Model-Context Protocol interface. Supports listing buckets and objects, retrieving files, and uploading data to MinIO storage.

Category
访问服务器

README

MinIO Model-Context Protocol (MCP)

This project implements a Model-Context Protocol (MCP) server and client for MinIO object storage. It provides a standardized way to interact with MinIO.

Features

Server

Resources

Exposes MinIO data through Resources. The server can access and provide:

  • Text files (automatically detected based on file extension)
  • Binary files (handled as application/octet-stream)
  • Bucket contents (up to 1000 objects per bucket)

Tools

  • ListBuckets

    • Returns a list of all buckets owned by the authenticated sender of the request
    • Optional parameters: start_after (pagination), max_buckets (limit results)
  • ListObjects

    • Returns some or all (up to 1,000) of the objects in a bucket with each request
    • Required parameter: bucket_name
    • Optional parameters: prefix (filter by prefix), max_keys (limit results)
  • GetObject

    • Retrieves an object from MinIO
    • Required parameters: bucket_name, object_name
  • PutObject

    • Uploads a file to MinIO bucket using fput method
    • Required parameters: bucket_name, object_name, file_path

Client

The project includes multiple client implementations:

  1. Basic Client - Simple client for direct interaction with the MinIO MCP server
  2. Anthropic Client - Integration with Anthropic's Claude models for AI-powered interactions with MinIO

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/minio-mcp.git
cd minio-mcp
  1. Install dependencies using pip:
pip install -r requirements.txt

Or using uv:

uv pip install -r requirements.txt

Environment Configuration

Create a .env file in the root directory with the following configuration:

# MinIO Configuration
MINIO_ENDPOINT=play.min.io
MINIO_ACCESS_KEY=your_access_key
MINIO_SECRET_KEY=your_secret_key
MINIO_SECURE=true
MINIO_MAX_BUCKETS=5

# Server Configuration
SERVER_HOST=0.0.0.0
SERVER_PORT=8000

# For Anthropic Client (if using)
ANTHROPIC_API_KEY=your_anthropic_api_key

Usage

Running the Server

The server can be run directly:

python src/minio_mcp_server/server.py

Using the Basic Client

from src.client import main
import asyncio

asyncio.run(main())

Using the Anthropic Client

  1. Configure the servers in src/client/servers_config.json:
{
  "mcpServers": {
    "minio_service": {
      "command": "python",
      "args": ["path/to/minio_mcp_server/server.py"]
    }
  }
}
  1. Run the client:
python src/client/mcp_anthropic_client.py
  1. Interact with the assistant:

    • The assistant will automatically detect available tools
    • You can ask questions about your MinIO data
    • The assistant will use the appropriate tools to retrieve information
  2. Exit the session:

    • Type quit or exit to end the session

Integration with Claude Desktop

You can integrate this MCP server with Claude Desktop:

Configuration

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "minio-mcp": {
      "command": "python",
      "args": [
        "path/to/minio-mcp/src/minio_mcp_server/server.py"
      ]
    }
  }
}

Development

Project Structure

minio-mcp/
├── src/
│   ├── client/                  # Client implementations
│   │   ├── mcp_anthropic_client.py  # Anthropic integration
│   │   └── servers_config.json  # Server configuration
│   ├── minio_mcp_server/        # MCP server implementation
│   │   ├── resources/           # Resource implementations
│   │   │   └── minio_resource.py  # MinIO resource
│   │   └── server.py            # Main server implementation
│   ├── __init__.py
│   └── client.py                # Basic client implementation
├── LICENSE
├── pyproject.toml
├── README.md
└── requirements.txt

Running Tests

pytest

Code Formatting

black src/
isort src/
flake8 src/

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we recommend using the MCP Inspector:

npx @modelcontextprotocol/inspector python path/to/minio-mcp/src/minio_mcp_server/server.py

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

License

This project is licensed under the MIT License - see the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选