MinIO MCP Server
Enables interaction with MinIO object storage through a standardized Model-Context Protocol interface. Supports listing buckets and objects, retrieving files, and uploading data to MinIO storage.
README
MinIO Model-Context Protocol (MCP)
This project implements a Model-Context Protocol (MCP) server and client for MinIO object storage. It provides a standardized way to interact with MinIO.
Features
Server
Resources
Exposes MinIO data through Resources. The server can access and provide:
- Text files (automatically detected based on file extension)
- Binary files (handled as application/octet-stream)
- Bucket contents (up to 1000 objects per bucket)
Tools
-
ListBuckets
- Returns a list of all buckets owned by the authenticated sender of the request
- Optional parameters:
start_after(pagination),max_buckets(limit results)
-
ListObjects
- Returns some or all (up to 1,000) of the objects in a bucket with each request
- Required parameter:
bucket_name - Optional parameters:
prefix(filter by prefix),max_keys(limit results)
-
GetObject
- Retrieves an object from MinIO
- Required parameters:
bucket_name,object_name
-
PutObject
- Uploads a file to MinIO bucket using fput method
- Required parameters:
bucket_name,object_name,file_path
Client
The project includes multiple client implementations:
- Basic Client - Simple client for direct interaction with the MinIO MCP server
- Anthropic Client - Integration with Anthropic's Claude models for AI-powered interactions with MinIO
Installation
- Clone the repository:
git clone https://github.com/yourusername/minio-mcp.git
cd minio-mcp
- Install dependencies using pip:
pip install -r requirements.txt
Or using uv:
uv pip install -r requirements.txt
Environment Configuration
Create a .env file in the root directory with the following configuration:
# MinIO Configuration
MINIO_ENDPOINT=play.min.io
MINIO_ACCESS_KEY=your_access_key
MINIO_SECRET_KEY=your_secret_key
MINIO_SECURE=true
MINIO_MAX_BUCKETS=5
# Server Configuration
SERVER_HOST=0.0.0.0
SERVER_PORT=8000
# For Anthropic Client (if using)
ANTHROPIC_API_KEY=your_anthropic_api_key
Usage
Running the Server
The server can be run directly:
python src/minio_mcp_server/server.py
Using the Basic Client
from src.client import main
import asyncio
asyncio.run(main())
Using the Anthropic Client
- Configure the servers in
src/client/servers_config.json:
{
"mcpServers": {
"minio_service": {
"command": "python",
"args": ["path/to/minio_mcp_server/server.py"]
}
}
}
- Run the client:
python src/client/mcp_anthropic_client.py
-
Interact with the assistant:
- The assistant will automatically detect available tools
- You can ask questions about your MinIO data
- The assistant will use the appropriate tools to retrieve information
-
Exit the session:
- Type
quitorexitto end the session
- Type
Integration with Claude Desktop
You can integrate this MCP server with Claude Desktop:
Configuration
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"minio-mcp": {
"command": "python",
"args": [
"path/to/minio-mcp/src/minio_mcp_server/server.py"
]
}
}
}
Development
Project Structure
minio-mcp/
├── src/
│ ├── client/ # Client implementations
│ │ ├── mcp_anthropic_client.py # Anthropic integration
│ │ └── servers_config.json # Server configuration
│ ├── minio_mcp_server/ # MCP server implementation
│ │ ├── resources/ # Resource implementations
│ │ │ └── minio_resource.py # MinIO resource
│ │ └── server.py # Main server implementation
│ ├── __init__.py
│ └── client.py # Basic client implementation
├── LICENSE
├── pyproject.toml
├── README.md
└── requirements.txt
Running Tests
pytest
Code Formatting
black src/
isort src/
flake8 src/
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we recommend using the MCP Inspector:
npx @modelcontextprotocol/inspector python path/to/minio-mcp/src/minio_mcp_server/server.py
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。