MkDocs MCP Plugin
Enables AI agents to interact with MkDocs documentation through intelligent search (keyword, vector, and hybrid), document retrieval, and automatic indexing. Automatically detects and launches MkDocs projects for seamless documentation querying.
README
MkDocs MCP Plugin 🔍
A comprehensive MCP (Model Context Protocol) server for MkDocs documentation that provides intelligent search, retrieval, and integration capabilities for AI agents. This plugin automatically detects MkDocs projects, launches the development server, and provides powerful tools for querying documentation.
Features
🚀 Auto-Detection & Integration
- Automatically detects
mkdocs.ymlormkdocs.yamlin your project - Launches MkDocs development server alongside the MCP server
- Seamless integration with existing MkDocs workflows
🔎 Advanced Search Capabilities
- Keyword Search: Fast, accurate text-based search using Whoosh indexing
- Vector Search: Semantic search using sentence transformers (
all-MiniLM-L6-v2) - Hybrid Search: Combines both keyword and semantic search for optimal results
- Real-time Indexing: Automatically indexes markdown files with full-text search
📄 Document Operations
- Read individual markdown files with metadata extraction
- List all available documentation with titles and paths
- Extract headings, titles, and content structure
- Support for nested directory structures
🤖 MCP Protocol Compliance
- Full MCP server implementation using FastMCP
- Tools, resources, and prompts for agent interaction
- Structured responses with comprehensive error handling
- Support for concurrent agent connections
Installation
Using UV/UVX (Recommended)
Install and run directly with uvx:
# Install and run in one command
uvx mkdocs-mcp-plugin
# Or install globally
uv tool install mkdocs-mcp-plugin
# Then run from any MkDocs project
mkdocs-mcp
Using pip
# Install from source
pip install git+https://github.com/douinc/mkdocs-mcp-plugin.git
# Or clone and install locally
git clone https://github.com/douinc/mkdocs-mcp-plugin.git
cd mkdocs-mcp-plugin
pip install -e .
Development Installation
git clone https://github.com/douinc/mkdocs-mcp-plugin.git
cd mkdocs-mcp-plugin
# Install with UV (recommended)
uv sync --all-extras
# Or with pip
pip install -e ".[dev]"
Usage
Basic Usage
Navigate to any directory containing a mkdocs.yml file and run:
mkdocs-mcp
The server will:
- Detect your MkDocs configuration
- Start the MkDocs development server (default: http://localhost:8000)
- Launch the MCP server for agent interaction
- Index your documentation for search
Configuration
The server automatically adapts to your MkDocs configuration:
# mkdocs.yml
site_name: My Documentation
docs_dir: docs # Custom docs directory
site_url: https://mydocs.example.com
theme:
name: material
plugins:
- search
Environment Variables
MKDOCS_PORT: Port for the MkDocs server (default: 8000)MCP_PORT: Port for the MCP server (auto-selected)
MCP Tools
Document Operations
read_document
Read a specific markdown file with metadata:
{
"file_path": "getting-started.md",
"docs_dir": "docs" # Optional, auto-detected
}
list_documents
Get a list of all available documentation:
{
"docs_dir": "docs" # Optional, auto-detected
}
Search Operations
search (Hybrid Search)
Combines keyword and semantic search:
{
"query": "authentication setup",
"search_type": "hybrid", # "keyword", "vector", or "hybrid"
"max_results": 10
}
keyword_search
Fast text-based search:
{
"query": "configuration options",
"max_results": 10
}
vector_search
Semantic similarity search:
{
"query": "how to deploy",
"max_results": 10
}
Utility Tools
get_mkdocs_info
Get information about the current MkDocs project:
{} # No parameters required
restart_mkdocs_server
Restart the MkDocs development server:
{
"port": 8001 # Optional, defaults to 8000
}
rebuild_search_index
Rebuild the search index:
{
"docs_dir": "docs" # Optional, auto-detected
}
MCP Resources
mkdocs://documents
Access to document metadata and structure:
{
"document_count": 25,
"docs_dir": "/path/to/docs",
"documents": [
{
"path": "index.md",
"title": "Welcome",
"size": 1024
}
]
}
MCP Prompts
mkdocs-rag-search
Generate intelligent search queries for documentation:
{
"topic": "authentication" # Search topic
}
Advanced Features
Vector Search Dependencies
For semantic search capabilities, ensure these packages are installed:
# Included in default installation
pip install sentence-transformers scikit-learn numpy
If these packages are not available, the server will fall back to keyword-only search.
Custom Index Configuration
The server uses Whoosh for indexing with the following schema:
path: Document file pathtitle: Document title (from first H1 or filename)content: Full text content (markdown converted to plain text)headings: All heading text for structural search
Search Result Structure
All search operations return results in this format:
{
"success": true,
"query": "your search query",
"result_count": 5,
"results": [
{
"path": "docs/api/authentication.md",
"title": "Authentication Guide",
"score": 0.95,
"snippet": "...highlighted excerpt...",
"search_methods": ["keyword", "vector"]
}
]
}
Integration Examples
Claude Code Configuration
Add to your Claude Code config:
{
"mcpServers": {
"mkdocs-mcp": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/douinc/mkdocs-mcp-plugin",
"--with",
"mkdocs-material",
"--with",
"mkdocs-git-revision-date-localized-plugin",
"--with",
"mkdocs-minify-plugin",
"--with",
"mkdocs-mermaid2-plugin",
"--with",
"mkdocs-print-site-plugin",
"mkdocs-mcp"
],
"env": {
"MKDOCS_PORT": "8000"
}
}
}
}
Error Handling
The server provides comprehensive error handling:
- Missing MkDocs: Graceful fallback to MCP-only mode
- Invalid configurations: Clear error messages with suggestions
- Search failures: Automatic fallback between search methods
- File access errors: Detailed error reporting with context
Troubleshooting
Common Issues
-
MkDocs server not starting:
# Check if MkDocs is installed mkdocs --version # Install if missing pip install mkdocs -
Vector search not working:
# Install optional dependencies pip install sentence-transformers -
Permission errors:
# Check file permissions ls -la mkdocs.yml
Debug Mode
Run with verbose output:
# Set environment variable for debug output
MKDOCS_DEBUG=1 mkdocs-mcp
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Make your changes
- Run tests:
uv run pytest - Format code:
uv run black . && uv run ruff check --fix . - Submit a pull request
Development Setup
git clone https://github.com/douinc/mkdocs-mcp-plugin.git
cd mkdocs-mcp-plugin
# Install with all dependencies
uv sync --all-extras
# Run tests
uv run pytest
# Run linting
uv run ruff check
uv run black --check .
License
MIT License - see LICENSE file for details.
Changelog
v0.1.0
- Initial release
- MkDocs auto-detection and server integration
- Hybrid search with keyword and vector capabilities
- Full MCP protocol compliance
- UV/UVX support
Support
Built with ❤️ by dou inc.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。