ML Jupyter MCP

ML Jupyter MCP

Execute Python code with persistent state across Claude conversations using a background Jupyter kernel. Supports creating notebooks, managing virtual environments, and maintaining variables/imports between code executions.

Category
访问服务器

README

ML Jupyter MCP - UV-Centric Persistent Jupyter Kernel for Claude

Execute Python code with persistent state across Claude conversations using MCP (Model Context Protocol).

✨ Features

  • 🔄 Persistent State - Variables and imports persist across executions
  • 📓 Notebook Support - Create and manage Jupyter notebooks
  • 🐍 Virtual Environment Detection - Automatically uses project's .venv
  • 🚀 Easy Installation - One-line setup with Claude MCP

📦 Installation

Quick Install (Recommended)

# Install from PyPI
pipx install ml-jupyter-mcp

# Add to Claude Code
claude mcp add jupyter-executor ml-jupyter-mcp

That's it! The MCP server is now available in all your Claude sessions.

Alternative: Install with UV

# Install with UV tool
uv tool install ml-jupyter-mcp

# Add to Claude Code  
claude mcp add jupyter-executor "uvx ml-jupyter-mcp"

Alternative: Clone and Install Locally

# Clone the repository
git clone https://github.com/mayankketkar/ml-jupyter-mcp.git
cd ml-jupyter-mcp

# Create virtual environment
uv venv .venv
source .venv/bin/activate

# Install in development mode
pip install -e .

# Add to Claude Code
claude mcp add jupyter-executor "$(pwd)/.venv/bin/python -m ml_jupyter_mcp.server"

🎯 Usage

Once installed, you can use these MCP tools in any Claude conversation:

Execute Python Code

# In Claude, use:
mcp__jupyter-executor__execute_code("x = 42; print(f'x = {x}')")

# Later in the same conversation:
mcp__jupyter-executor__execute_code("print(f'x is still {x}')")  # x persists!

Create Jupyter Notebooks

# Add code cells to notebooks
mcp__jupyter-executor__add_notebook_cell("analysis.ipynb", "code", "import pandas as pd")

Check Kernel Status

# Check if kernel is running
mcp__jupyter-executor__kernel_status()

Shutdown Kernel

# Clean shutdown when done
mcp__jupyter-executor__shutdown_kernel()

🛠️ How It Works

  1. Kernel Daemon - Maintains a persistent Jupyter kernel in the background
  2. MCP Server - Provides tools that Claude can invoke
  3. State Persistence - All variables, imports, and definitions persist across tool calls
  4. Auto-detection - Automatically finds and uses your project's .venv if available

📝 Example Workflow

# Start a data analysis session
mcp__jupyter-executor__execute_code("""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Load your data
df = pd.read_csv('data.csv')
print(f"Loaded {len(df)} rows")
""")

# Continue analysis in next message
mcp__jupyter-executor__execute_code("""
# df is still available!
summary = df.describe()
print(summary)
""")

# Create a notebook with your analysis
mcp__jupyter-executor__add_notebook_cell("analysis.ipynb", "code", """
# Data Analysis
df.groupby('category').mean().plot(kind='bar')
plt.title('Average by Category')
plt.show()
""")

🔧 Configuration

The tool automatically:

  • Detects and uses .venv in your project directory
  • Installs required packages on first notebook creation
  • Manages kernel lifecycle automatically

📋 Requirements

  • Python 3.8+
  • Claude Code CLI (claude command)

🐛 Troubleshooting

MCP tools not showing up?

# Check if server is connected
claude mcp list

# Should show:
# jupyter-executor: ... - ✓ Connected

Kernel not starting?

# Remove and re-add the server
claude mcp remove jupyter-executor
claude mcp add jupyter-executor "uvx ml-jupyter-mcp"

Port 9999 already in use?

The kernel daemon uses port 9999. If it's in use, the tool will handle it automatically.

🤝 Contributing

Contributions welcome! Please feel free to submit a Pull Request.

📄 License

MIT License - feel free to use in your projects!

🙏 Acknowledgments

Built for the Claude Code community to enable persistent Python execution across conversations.


Pro Tip: After installation, try asking Claude: "Use jupyter-executor to calculate fibonacci numbers and keep them in memory for later use!"

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选