ML Task Router MCP Server

ML Task Router MCP Server

Enables routing of ML tasks like chat, sentiment analysis, recommendations, and summarization to appropriate models through a dynamic YAML-based registry. Provides async FastAPI endpoints with streaming support, retry logic, and pluggable model architecture for scalable ML inference.

Category
访问服务器

README

🧠 MCP Server (Model Compute Paradigm)

A modular, production-ready FastAPI server built to route and orchestrate multiple AI/LLM-powered models behind a unified, scalable interface. It supports streaming chat, LLM-based routing, and multi-model pipelines (like analyze → summarize → recommend) – all asynchronously and fully Dockerized.


🎯 Project Score (Production Readiness)

Capability Status Details
🧠 Multi-Model Orchestration ✅ Complete Dynamic routing between chat, summarize, sentiment, recommend
🤖 LLM-Based Task Router ✅ Complete GPT-powered routing via "auto" task type
🔁 Async FastAPI + Concurrency ✅ Complete Async/await + concurrent task execution with simulated/model API delays
🔊 GPT Streaming Support ✅ Complete text/event-stream chunked responses for chat endpoints
🧪 Unit + Mocked API Tests ✅ Complete Pytest-based test suite with mocked run() responses
🐳 Dockerized + Clean Layout ✅ Complete Python 3.13 base image, no Conda dependency, production-ready Dockerfile
📦 Metadata-Driven Registry ✅ Complete Model metadata loaded from external YAML config
🔐 Rate Limiting & Retry ⏳ In Progress Handles 429 retry loop; rate limiting controls WIP
🧪 CI + Docs ⏳ Next GitHub Actions + Swagger/Redoc planned

🧩 Why This Project? (Motivation)

Modern ML/LLM deployments often involve:

  • Multiple task types and model backends (OpenAI, HF, local, REST)
  • Routing decisions based on input intent
  • Combining outputs of multiple models (e.g., summarize + recommend)
  • Handling 429 retries, async concurrency, streaming responses

🔧 However, building such an LLM backend API server that is:

  • Async + concurrent
  • Streamable
  • Pluggable (via metadata)
  • Testable
  • Dockerized … is non-trivial and not easily found in one single place.

💡 What We’ve Built (Solution)

This repo is a production-ready PoC of an MCP (Model-Compute Paradigm) architecture:

  • FastAPI-based microserver to handle multiple tasks via /task endpoint
  • ✅ Task router that can:
    • 🔁 Dispatch to specific model types (chat, sentiment, summarize, recommend)
    • 🤖 Use an LLM to infer which task to run (auto)
    • 🧠 Run multiple models in sequence (analyze)
  • ✅ GPT streaming via text/event-stream
  • ✅ Async/await enabled architecture for concurrency
  • ✅ Clean modular code for easy extension
  • ✅ Dockerized for deployment
  • ✅ Tested using Pytest with mocking

🛠️ Use Cases

Use Case MCP Server Support
Build your own ChatGPT-style API chat task with streaming
Build intelligent task router auto task with GPT-powered intent parsing
Build AI pipelines (like RAG/RL) analyze task with sequential execution
Swap between OpenAI/HuggingFace APIs ✅ Via model_registry.yaml config
Add custom models (e.g., OCR, vision) ✅ Just add a new module + registry entry

🚀 Features

  • Async FastAPI server
  • 🧠 Task-based Model Routing (chat, sentiment, recommender, summarize)
  • 📄 Model Registry from YAML/JSON
  • 🔁 Automatic Retry and Rate Limit Handling for APIs
  • 🔄 Streaming Responses for Chat
  • 🧪 Unit Tests + Mocked API Calls
  • 🐳 Dockerized for production deployment
  • 📦 Modular structure, ready for CI/CD

🏗 Architecture Overview

               ┌────────────┐
               │  Frontend  │
               └─────┬──────┘
                     │
                     ▼
              ┌────────────┐        YAML/JSON
              │  FastAPI   │◄────┐ Model Registry
              │   Server   │     │
              └─────┬──────┘     ▼
     ┌──────────────┼──────────────┐
     │              │              │
     ▼              ▼              ▼
 [chat]         [sentiment]   [recommender]
  GPT-4         HF pipeline   stub logic / API

---
🛠 Setup
📦 Install dependencies
git clone https://github.com/YOUR_USERNAME/mcp-server.git
cd mcp-server
---
# Optional: create virtualenv
python -m venv .venv
source .venv/bin/activate  # or .venv\Scripts\activate on Windows
or
conda create -n <env_name>
conda activate <env_name>

pip install -r requirements.txt

▶️ Run the server
uvicorn app:app --reload

Access the docs at: http://localhost:8000/docs


🧪 Running Tests
pytest tests/

Unit tests mock external API calls using unittest.mock.AsyncMock.

🐳 Docker Support
🔨 Build image
docker build -t mcp-server .

🚀 Run container
docker run -p 8000:8000 mcp-server

🧰 Example API Request
curl -X POST http://localhost:8000/task \
  -H "Content-Type: application/json" \
  -d '{
        "type": "chat",
        "input": "What are the benefits of restorative yoga?"
      }'

🔍 Directory Structure
mcp/
├── app.py                  # FastAPI entry
├── models/                 # ML models (chat, sentiment, etc.)
├── agent/
│   ├── task_router.py      # Task router
│   └── model_registry.py   # Registry loader
├── registry/models.yaml    # YAML registry of model metadata
├── tests/                  # Unit tests
├── Dockerfile
├── requirements.txt
├── README.md
└── .env / .gitignore


🤝 Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you’d like to change.

📄 License
MIT

✨ Author
Built by Sriram Kumar Reddy Challa

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选