MLflow MCP Server
Enables AI assistants to interact with MLflow experiments, runs, and registered models. Supports browsing experiments, retrieving run details with metrics and parameters, and querying the model registry through natural language.
README
MLflow MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with MLflow, enabling AI assistants to interact with MLflow experiments, runs, and registered models.
Overview
This MCP server exposes MLflow functionality through a standardized protocol, allowing AI assistants like Claude to:
- Browse and search MLflow experiments
- Retrieve experiment runs and their details
- Query registered models and model versions
- Access metrics, parameters, and metadata
Features
Experiment Management
- Get Experiment: Retrieve experiment details by ID
- Get Experiment by Name: Find experiments by name
- Search Experiments: List and filter experiments with pagination support
Run Management
- Get Run: Retrieve detailed run information including metrics, parameters, and tags
- Get Experiment Runs: List all runs for a specific experiment
- Run Type Detection: Automatically identifies parent, child, or standalone runs
Model Registry
- Get Registered Models: Search and list registered models
- Get Model Versions: Browse model versions with filtering capabilities
Installation
Prerequisites
- Python 3.11 or higher
- uv package manager
Setup
- Clone the repository:
git clone <repository-url>
cd mlflow-mcp-server
- Install dependencies:
uv sync
Configuration
MLflow Connection
The server is pre-configured to connect to your internal MLflow instance:
- Tracking URI:
YOUR URI
To use with a different MLflow instance, modify mlflow_mcp_server/utils/mlflow_client.py:
import mlflow
from mlflow import MlflowClient
mlflow.set_tracking_uri("your-mlflow-tracking-uri")
client = MlflowClient()
MCP Configuration
Add the following configuration to your MCP client (e.g., ~/.cursor/mcp.json for Cursor):
{
"mcpServers": {
"mlflow": {
"command": "uvx",
"args": ["--from", "git+https://github.com/yesid-lopez/mlflow-mcp-server", "mlflow_mcp_server"],
"env": {
"MLFLOW_TRACKING_URI": "YOUR_TRACKING_URI"
}
}
}
}
Replace /path/to/mlflow-mcp-server with the actual path to your project directory.
Usage
Running the Server
uv run -m mlflow_mcp_server
Available Tools
Once configured, the following tools become available to your AI assistant:
Experiment Tools
get_experiment(experiment_id: str)- Get experiment details by IDget_experiment_by_name(experiment_name: str)- Get experiment by namesearch_experiments(name?: str, token?: str)- Search experiments with optional filtering
Run Tools
get_run(run_id: str)- Get detailed run informationget_experiment_runs(experiment_id: str, token?: str)- List runs for an experiment
Model Registry Tools
get_registered_models(model_name?: str, token?: str)- Search registered modelsget_model_versions(model_name?: str, token?: str)- Browse model versions
Example Usage with AI Assistant
You can now ask your AI assistant questions like:
- "Show me all experiments containing 'recommendation' in the name"
- "Get the details of run ID abc123 including its metrics and parameters"
- "List all registered models and their latest versions"
- "Find experiments related to customer segmentation"
Development
Project Structure
mlflow-mcp-server/
├── mlflow_mcp_server/
│ ├── __main__.py # Server entry point
│ ├── server.py # Main MCP server configuration
│ ├── tools/ # MLflow integration tools
│ │ ├── experiment_tools.py
│ │ ├── run_tools.py
│ │ └── registered_models.py
│ └── utils/
│ └── mlflow_client.py # MLflow client configuration
├── pyproject.toml # Project dependencies
└── README.md
Dependencies
- mcp[cli]: Model Context Protocol framework
- mlflow: MLflow client library
- pydantic: Data validation and serialization
Adding New Tools
To add new MLflow functionality:
- Create a new function in the appropriate tool file
- Add the tool to
server.py:from mlflow_mcp_server.tools.your_module import your_function mcp.add_tool(your_function)
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
[Add your license information here]
Support
For issues and questions:
- Check existing issues in the repository
- Create a new issue with detailed reproduction steps
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。