MLflow MCP Server

MLflow MCP Server

Enables AI assistants to interact with MLflow experiments, runs, and registered models. Supports browsing experiments, retrieving run details with metrics and parameters, and querying the model registry through natural language.

Category
访问服务器

README

MLflow MCP Server

A Model Context Protocol (MCP) server that provides seamless integration with MLflow, enabling AI assistants to interact with MLflow experiments, runs, and registered models.

Overview

This MCP server exposes MLflow functionality through a standardized protocol, allowing AI assistants like Claude to:

  • Browse and search MLflow experiments
  • Retrieve experiment runs and their details
  • Query registered models and model versions
  • Access metrics, parameters, and metadata

Features

Experiment Management

  • Get Experiment: Retrieve experiment details by ID
  • Get Experiment by Name: Find experiments by name
  • Search Experiments: List and filter experiments with pagination support

Run Management

  • Get Run: Retrieve detailed run information including metrics, parameters, and tags
  • Get Experiment Runs: List all runs for a specific experiment
  • Run Type Detection: Automatically identifies parent, child, or standalone runs

Model Registry

  • Get Registered Models: Search and list registered models
  • Get Model Versions: Browse model versions with filtering capabilities

Installation

Prerequisites

  • Python 3.11 or higher
  • uv package manager

Setup

  1. Clone the repository:
git clone <repository-url>
cd mlflow-mcp-server
  1. Install dependencies:
uv sync

Configuration

MLflow Connection

The server is pre-configured to connect to your internal MLflow instance:

  • Tracking URI: YOUR URI

To use with a different MLflow instance, modify mlflow_mcp_server/utils/mlflow_client.py:

import mlflow
from mlflow import MlflowClient

mlflow.set_tracking_uri("your-mlflow-tracking-uri")
client = MlflowClient()

MCP Configuration

Add the following configuration to your MCP client (e.g., ~/.cursor/mcp.json for Cursor):

{
  "mcpServers": {
    "mlflow": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/yesid-lopez/mlflow-mcp-server", "mlflow_mcp_server"],
      "env": {
        "MLFLOW_TRACKING_URI": "YOUR_TRACKING_URI"
      }
    }
  }
}

Replace /path/to/mlflow-mcp-server with the actual path to your project directory.

Usage

Running the Server

uv run -m mlflow_mcp_server

Available Tools

Once configured, the following tools become available to your AI assistant:

Experiment Tools

  • get_experiment(experiment_id: str) - Get experiment details by ID
  • get_experiment_by_name(experiment_name: str) - Get experiment by name
  • search_experiments(name?: str, token?: str) - Search experiments with optional filtering

Run Tools

  • get_run(run_id: str) - Get detailed run information
  • get_experiment_runs(experiment_id: str, token?: str) - List runs for an experiment

Model Registry Tools

  • get_registered_models(model_name?: str, token?: str) - Search registered models
  • get_model_versions(model_name?: str, token?: str) - Browse model versions

Example Usage with AI Assistant

You can now ask your AI assistant questions like:

  • "Show me all experiments containing 'recommendation' in the name"
  • "Get the details of run ID abc123 including its metrics and parameters"
  • "List all registered models and their latest versions"
  • "Find experiments related to customer segmentation"

Development

Project Structure

mlflow-mcp-server/
├── mlflow_mcp_server/
│   ├── __main__.py          # Server entry point
│   ├── server.py            # Main MCP server configuration
│   ├── tools/               # MLflow integration tools
│   │   ├── experiment_tools.py
│   │   ├── run_tools.py
│   │   └── registered_models.py
│   └── utils/
│       └── mlflow_client.py # MLflow client configuration
├── pyproject.toml           # Project dependencies
└── README.md

Dependencies

  • mcp[cli]: Model Context Protocol framework
  • mlflow: MLflow client library
  • pydantic: Data validation and serialization

Adding New Tools

To add new MLflow functionality:

  1. Create a new function in the appropriate tool file
  2. Add the tool to server.py:
    from mlflow_mcp_server.tools.your_module import your_function
    mcp.add_tool(your_function)
    

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

[Add your license information here]

Support

For issues and questions:

  • Check existing issues in the repository
  • Create a new issue with detailed reproduction steps

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选