M/M/1 Queue Simulation MCP Server
Enables LLMs to access M/M/1 queuing theory resources, validate parameters, calculate theoretical metrics, generate and execute SimPy simulations, and compare simulation results with theoretical predictions.
README
MCP Server for M/M/1 Queue Simulation
A Model Context Protocol server that provides comprehensive resources, tools, and prompts for M/M/1 queuing system simulation and analysis.
What is M/M/1?
M/M/1 is a fundamental queuing model in operations research:
- First M: Markovian (Poisson) arrivals
- Second M: Markovian (exponential) service times
- 1: Single server
This MCP server enables LLMs like Claude to:
- Access structured M/M/1 theory and formulas
- Validate simulation parameters
- Calculate theoretical performance metrics
- Generate and execute SimPy simulations
- Compare simulation results with theory
Features
📚 Resources (7)
mm1://schema- Complete M/M/1 system schemamm1://parameters- Parameter definitions with constraintsmm1://metrics- Performance metrics catalogmm1://formulas- Theoretical formulasmm1://guidelines- Implementation best practicesmm1://examples- Pre-configured scenariosmm1://literature- References and citations
🔧 Tools (5)
validate_config- Validate M/M/1 parameters and check stabilitycalculate_metrics- Compute theoretical performance metricsrun_simulation- Execute SimPy discrete event simulationcompare_results- Analyze simulation accuracyrecommend_parameters- Suggest optimal configuration
💬 Prompts (4)
generate_simulation_code- Create production-ready SimPy codeexplain_mm1_theory- Educational content on M/M/1 theoryanalyze_results- Interpret simulation outcomesdebug_simulation- Troubleshoot common issues
Installation
Option 1: Using uvx (Recommended)
uvx mcp-server-mm1
Option 2: Using pip
pip install mcp-server-mm1
mcp-server-mm1
Option 3: From Source
git clone https://github.com/yourusername/mcp-server-mm1.git
cd mcp-server-mm1
uv pip install -e .
mcp-server-mm1
Usage with Claude Desktop
Add to your claude_desktop_config.json:
macOS
Location: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows
Location: %APPDATA%\Claude\claude_desktop_config.json
Configuration
{
"mcpServers": {
"mm1-simulation": {
"command": "uvx",
"args": ["mcp-server-mm1"]
}
}
}
Restart Claude Desktop and the server will be available!
Example Usage in Claude
1. Get M/M/1 Schema
User: Show me the M/M/1 queue schema
Claude uses: mm1://schema resource
2. Validate Configuration
User: Is λ=5, μ=8 a valid M/M/1 configuration?
Claude uses: validate_config tool
Result: ✓ Valid, ρ=0.625
3. Calculate Theoretical Metrics
User: Calculate theoretical metrics for λ=5, μ=8
Claude uses: calculate_metrics tool
Result:
- Utilization: 0.625
- Avg queue length: 1.0417
- Avg waiting time: 0.2083
- Avg system time: 0.3333
4. Run Simulation
User: Run a simulation with λ=5, μ=8 for 10,000 time units
Claude uses: run_simulation tool
Result: Simulation metrics + theoretical comparison + accuracy analysis
5. Generate Code
User: Generate SimPy code for λ=3, μ=10
Claude uses: generate_simulation_code prompt
Result: Complete, production-ready Python code
Development
Setup Development Environment
# Clone repository
git clone https://github.com/yourusername/mcp-server-mm1.git
cd mcp-server-mm1
# Install dependencies
uv pip install -e ".[dev]"
Run Tests
pytest
Code Quality
# Format code
black src/ tests/
# Lint
ruff check src/ tests/
# Type check
mypy src/
Local Testing
Use the MCP Inspector to test the server locally:
# Install MCP inspector (if not already installed)
npm install -g @modelcontextprotocol/inspector
# Run server with inspector
mcp dev src/mcp_server_mm1/server.py
This opens a web interface where you can:
- Browse available resources
- Test tool invocations
- Try prompt templates
- Inspect JSON-RPC communication
Architecture
src/mcp_server_mm1/
├── server.py # FastMCP server with resources/tools/prompts
├── schemas/
│ └── mm1_schema.py # M/M/1 system schema definition
├── simulations/
│ └── mm1_queue.py # SimPy simulation implementation
└── utils/
└── metrics.py # Theoretical calculations
M/M/1 Theory Quick Reference
Key Formulas
Given arrival rate λ and service rate μ:
- Utilization: ρ = λ/μ
- Avg Queue Length: L_q = ρ²/(1-ρ)
- Avg Time in Queue: W_q = ρ/(μ(1-ρ))
- Avg Time in System: W = 1/(μ(1-ρ))
Stability Condition
System must satisfy ρ < 1 (λ < μ)
If ρ ≥ 1, the queue grows unbounded!
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Make your changes with tests
- Submit a pull request
License
MIT License - see LICENSE file for details.
Related Work
This MCP server was developed as part of research on LLM-assisted simulation code generation for the Winter Simulation Conference (WSC) 2025.
References
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Made with ❤️ for the simulation and LLM communities
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。