Mnemex
Provides human-like memory dynamics for AI assistants where memories naturally fade over time unless reinforced through use, mimicking the Ebbinghaus forgetting curve. Enables automatic saving, searching, and management of contextual information with temporal decay algorithms.
README
Mnemex: Temporal Memory for AI
A Model Context Protocol (MCP) server providing human-like memory dynamics for AI assistants. Memories naturally fade over time unless reinforced through use, mimicking the Ebbinghaus forgetting curve.
[!WARNING] 🚧 ACTIVE DEVELOPMENT - EXPECT BUGS 🚧
This project is under active development and should be considered experimental. You will likely encounter bugs, breaking changes, and incomplete features. Use at your own risk. Please report issues on GitHub, but understand that this is research code, not production-ready software.
Known issues:
- API may change without notice between versions
- Test coverage is incomplete
📖 New to this project? Start with the ELI5 Guide for a simple explanation of what this does and how to use it.
Overview
This repository contains research, design, and a complete implementation of a short-term memory system that combines:
- Novel temporal decay algorithm based on cognitive science
- Reinforcement learning through usage patterns
- Two-layer architecture (STM + LTM) for working and permanent memory
- Smart prompting patterns for natural LLM integration
- Git-friendly storage with human-readable JSONL
- Knowledge graph with entities and relations
Why Mnemex?
🔒 Privacy & Transparency
All data stored locally on your machine - no cloud services, no tracking, no data sharing.
-
Short-term memory: Human-readable JSONL files (
~/.config/mnemex/jsonl/)- One JSON object per line
- Easy to inspect, version control, and backup
- Git-friendly format for tracking changes
-
Long-term memory: Markdown files optimized for Obsidian
- YAML frontmatter with metadata
- Wikilinks for connections
- Permanent storage you control
You own your data. You can read it, edit it, delete it, or version control it - all without any special tools.
Core Algorithm
The temporal decay scoring function:
$$ \Large \text{score}(t) = (n_{\text{use}})^\beta \cdot e^{-\lambda \cdot \Delta t} \cdot s $$
Where:
- $\large n_{\text{use}}$ - Use count (number of accesses)
- $\large \beta$ (beta) - Sub-linear use count weighting (default: 0.6)
- $\large \lambda = \frac{\ln(2)}{t_{1/2}}$ (lambda) - Decay constant; set via half-life (default: 3-day)
- $\large \Delta t$ - Time since last access (seconds)
- $\large s$ - Strength parameter $\in [0, 2]$ (importance multiplier)
Thresholds:
- $\large \tau_{\text{forget}}$ (default 0.05) — if score < this, forget
- $\large \tau_{\text{promote}}$ (default 0.65) — if score ≥ this, promote (or if $\large n_{\text{use}}\ge5$ in 14 days)
Decay Models:
- Power‑Law (default): heavier tail; most human‑like retention
- Exponential: lighter tail; forgets sooner
- Two‑Component: fast early forgetting + heavier tail
See detailed parameter reference, model selection, and worked examples in docs/scoring_algorithm.md.
Tuning Cheat Sheet
- Balanced (default)
- Half-life: 3 days (λ ≈ 2.67e-6)
- β = 0.6, τ_forget = 0.05, τ_promote = 0.65, use_count≥5 in 14d
- Strength: 1.0 (bump to 1.3–2.0 for critical)
- High‑velocity context (ephemeral notes, rapid switching)
- Half-life: 12–24 hours (λ ≈ 1.60e-5 to 8.02e-6)
- β = 0.8–0.9, τ_forget = 0.10–0.15, τ_promote = 0.70–0.75
- Long retention (research/archival)
- Half-life: 7–14 days (λ ≈ 1.15e-6 to 5.73e-7)
- β = 0.3–0.5, τ_forget = 0.02–0.05, τ_promote = 0.50–0.60
- Preference/decision heavy assistants
- Half-life: 3–7 days; β = 0.6–0.8
- Strength defaults: 1.3–1.5 for preferences; 1.8–2.0 for decisions
- Aggressive space control
- Raise τ_forget to 0.08–0.12 and/or shorten half-life; schedule weekly GC
- Environment template
- MNEMEX_DECAY_LAMBDA=2.673e-6, MNEMEX_DECAY_BETA=0.6
- MNEMEX_FORGET_THRESHOLD=0.05, MNEMEX_PROMOTE_THRESHOLD=0.65
- MNEMEX_PROMOTE_USE_COUNT=5, MNEMEX_PROMOTE_TIME_WINDOW=14
Decision thresholds:
- Forget: $\text{score} < 0.05$ → delete memory
- Promote: $\text{score} \geq 0.65$ OR $n_{\text{use}} \geq 5$ within 14 days → move to LTM
Key Innovations
1. Temporal Decay with Reinforcement
Unlike traditional caching (TTL, LRU), memories are scored continuously based on:
- Recency - Exponential decay over time
- Frequency - Use count with sub-linear weighting
- Importance - Adjustable strength parameter
This creates memory dynamics that closely mimic human cognition.
2. Smart Prompting System
Patterns for making AI assistants use memory naturally:
Auto-Save
User: "I prefer TypeScript over JavaScript"
→ Automatically saved with tags: [preferences, typescript, programming]
Auto-Recall
User: "Can you help with another TypeScript project?"
→ Automatically retrieves preferences and conventions
Auto-Reinforce
User: "Yes, still using TypeScript"
→ Memory strength increased, decay slowed
No explicit memory commands needed - just natural conversation.
3. Two-Layer Architecture
┌─────────────────────────────────────┐
│ Short-term memory │
│ - JSONL storage │
│ - Temporal decay │
│ - Hours to weeks retention │
└──────────────┬──────────────────────┘
│ Automatic promotion
↓
┌─────────────────────────────────────┐
│ LTM (Long-Term Memory) │
│ - Markdown files (Obsidian) │
│ - Permanent storage │
│ - Git version control │
└─────────────────────────────────────┘
Project Structure
mnemex/
├── README.md # This file
├── CLAUDE.md # Guide for AI assistants
├── src/mnemex/
│ ├── core/ # Decay, scoring, clustering
│ ├── storage/ # JSONL and LTM index
│ ├── tools/ # 10 MCP tools
│ ├── backup/ # Git integration
│ └── vault/ # Obsidian integration
├── docs/
│ ├── scoring_algorithm.md # Mathematical details
│ ├── prompts/ # Smart prompting patterns
│ ├── architecture.md # System design
│ └── api.md # Tool reference
├── tests/ # Test suite
├── examples/ # Usage examples
└── pyproject.toml # Project configuration
Quick Start
Installation
Recommended: UV Tool Install
# Install from GitHub (recommended)
uv tool install git+https://github.com/simplemindedbot/mnemex.git
# Or install from local directory (for development)
uv tool install .
This installs mnemex and all 7 CLI commands as isolated tools.
Alternative: Editable Install (for development)
# Clone and install in editable mode
git clone https://github.com/simplemindedbot/mnemex.git
cd mnemex
uv pip install -e ".[dev]"
Configuration
Copy .env.example to .env and configure:
# Storage
MNEMEX_STORAGE_PATH=~/.config/mnemex/jsonl
# Decay model (power_law | exponential | two_component)
MNEMEX_DECAY_MODEL=power_law
# Power-law parameters (default model)
MNEMEX_PL_ALPHA=1.1
MNEMEX_PL_HALFLIFE_DAYS=3.0
# Exponential (if selected)
# MNEMEX_DECAY_LAMBDA=2.673e-6 # 3-day half-life
# Two-component (if selected)
# MNEMEX_TC_LAMBDA_FAST=1.603e-5 # ~12h
# MNEMEX_TC_LAMBDA_SLOW=1.147e-6 # ~7d
# MNEMEX_TC_WEIGHT_FAST=0.7
# Common parameters
MNEMEX_DECAY_LAMBDA=2.673e-6
MNEMEX_DECAY_BETA=0.6
# Thresholds
MNEMEX_FORGET_THRESHOLD=0.05
MNEMEX_PROMOTE_THRESHOLD=0.65
# Long-term memory (optional)
LTM_VAULT_PATH=~/Documents/Obsidian/Vault
MCP Configuration
Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"mnemex": {
"command": "mnemex"
}
}
}
That's it! No paths, no environment variables needed.
For development (editable install):
{
"mcpServers": {
"mnemex": {
"command": "uv",
"args": ["--directory", "/path/to/mnemex", "run", "mnemex"],
"env": {"PYTHONPATH": "/path/to/mnemex/src"}
}
}
}
Configuration:
- Storage paths are configured in
~/.config/mnemex/.envor project.env - See
.env.examplefor all available settings
Maintenance
Use the maintenance CLI to inspect and compact JSONL storage:
# Show storage stats (active counts, file sizes, compaction hints)
mnemex-maintenance stats
# Compact JSONL (rewrite without tombstones/duplicates)
mnemex-maintenance compact
Migrating to UV Tool Install
If you're currently using an editable install (uv pip install -e .), you can switch to the simpler UV tool install:
# 1. Uninstall editable version
uv pip uninstall mnemex
# 2. Install as UV tool
uv tool install git+https://github.com/simplemindedbot/mnemex.git
# 3. Update Claude Desktop config to just:
# {"command": "mnemex"}
# Remove the --directory, run, and PYTHONPATH settings
Your data is safe! This only changes how the command is installed. Your memories in ~/.config/mnemex/ are untouched.
Migrating from STM Server
If you previously used this project as "STM Server", use the migration tool:
# Preview what will be migrated
mnemex-migrate --dry-run
# Migrate data files from ~/.stm/ to ~/.config/mnemex/
mnemex-migrate --data-only
# Also migrate .env file (rename STM_* variables to MNEMEX_*)
mnemex-migrate --migrate-env --env-path ./.env
The migration tool will:
- Copy JSONL files from
~/.stm/jsonl/to~/.config/mnemex/jsonl/ - Optionally rename environment variables (STM_* → MNEMEX_*)
- Create backups before making changes
- Provide clear next-step instructions
After migration, update your Claude Desktop config to use mnemex instead of stm.
CLI Commands
The server includes 7 command-line tools:
mnemex # Run MCP server
mnemex-migrate # Migrate from old STM setup
mnemex-index-ltm # Index Obsidian vault
mnemex-backup # Git backup operations
mnemex-vault # Vault markdown operations
mnemex-search # Unified STM+LTM search
mnemex-maintenance # JSONL storage stats and compaction
MCP Tools
10 tools for AI assistants to manage memories:
| Tool | Purpose |
|---|---|
save_memory |
Save new memory with tags, entities |
search_memory |
Search with filters and scoring |
search_unified |
Unified search across STM + LTM |
touch_memory |
Reinforce memory (boost strength) |
gc |
Garbage collect low-scoring memories |
promote_memory |
Move to long-term storage |
cluster_memories |
Find similar memories |
consolidate_memories |
Merge similar memories (algorithmic) |
read_graph |
Get entire knowledge graph |
open_memories |
Retrieve specific memories |
create_relation |
Link memories explicitly |
Example: Unified Search
Search across STM and LTM with the CLI:
mnemex-search "typescript preferences" --tags preferences --limit 5 --verbose
Example: Reinforce (Touch) Memory
Boost a memory's recency/use count to slow decay:
{
"memory_id": "mem-123",
"boost_strength": true
}
Sample response:
{
"success": true,
"memory_id": "mem-123",
"old_score": 0.41,
"new_score": 0.78,
"use_count": 5,
"strength": 1.1
}
Example: Promote Memory
Suggest and promote high-value memories to the Obsidian vault.
Auto-detect (dry run):
{
"auto_detect": true,
"dry_run": true
}
Promote a specific memory:
{
"memory_id": "mem-123",
"dry_run": false,
"target": "obsidian"
}
As an MCP tool (request body):
{
"query": "typescript preferences",
"tags": ["preferences"],
"limit": 5,
"verbose": true
}
Example: Consolidate Similar Memories
Find and merge duplicate or highly similar memories to reduce clutter:
Auto-detect candidates (preview):
{
"auto_detect": true,
"mode": "preview",
"cohesion_threshold": 0.75
}
Apply consolidation to detected clusters:
{
"auto_detect": true,
"mode": "apply",
"cohesion_threshold": 0.80
}
The tool will:
- Merge content intelligently (preserving unique information)
- Combine tags and entities (union)
- Calculate strength based on cluster cohesion
- Preserve earliest
created_atand latestlast_usedtimestamps - Create tracking relations showing consolidation history
Mathematical Details
Decay Curves
For a memory with $n_{\text{use}}=1$, $s=1.0$, and $\lambda = 2.673 \times 10^{-6}$ (3-day half-life):
| Time | Score | Status |
|---|---|---|
| 0 hours | 1.000 | Fresh |
| 12 hours | 0.917 | Active |
| 1 day | 0.841 | Active |
| 3 days | 0.500 | Half-life |
| 7 days | 0.210 | Decaying |
| 14 days | 0.044 | Near forget |
| 30 days | 0.001 | Forgotten |
Use Count Impact
With $\beta = 0.6$ (sub-linear weighting):
| Use Count | Boost Factor |
|---|---|
| 1 | 1.0× |
| 5 | 2.6× |
| 10 | 4.0× |
| 50 | 11.4× |
Frequent access significantly extends retention.
Documentation
- Scoring Algorithm - Complete mathematical model with LaTeX formulas
- Smart Prompting - Patterns for natural LLM integration
- Architecture - System design and implementation
- API Reference - MCP tool documentation
- Graph Features - Knowledge graph usage
Use Cases
Personal Assistant (Balanced)
- 3-day half-life
- Remember preferences and decisions
- Auto-promote frequently referenced information
Development Environment (Aggressive)
- 1-day half-life
- Fast context switching
- Aggressive forgetting of old context
Research / Archival (Conservative)
- 14-day half-life
- Long retention
- Comprehensive knowledge preservation
License
MIT License - See LICENSE for details.
Clean-room implementation. No AGPL dependencies.
Related Work
- Model Context Protocol - MCP specification
- Ebbinghaus Forgetting Curve - Cognitive science foundation
- Research inspired by: Memoripy, Titan MCP, MemoryBank
Citation
If you use this work in research, please cite:
@software{mnemex_2025,
title = {Mnemex: Temporal Memory for AI},
author = {simplemindedbot},
year = {2025},
url = {https://github.com/simplemindedbot/mnemex},
version = {1.0.0}
}
Contributing
Contributions are welcome! See CONTRIBUTING.md for detailed instructions.
🚨 Help Needed: Windows & Linux Testers!
I develop on macOS and need help testing on Windows and Linux. If you have access to these platforms, please:
- Try the installation instructions
- Run the test suite
- Report what works and what doesn't
See the Help Needed section in CONTRIBUTING.md for details.
General Contributions
For all contributors, see CONTRIBUTING.md for:
- Platform-specific setup (Windows, Linux, macOS)
- Development workflow
- Testing guidelines
- Code style requirements
- Pull request process
Quick start:
- Read CONTRIBUTING.md for platform-specific setup
- Understand the Architecture docs
- Review the Scoring Algorithm
- Follow existing code patterns
- Add tests for new features
- Update documentation
Status
Version: 1.0.0 Status: Research implementation - functional but evolving
Phase 1 (Complete) ✅
-
10 MCP tools
-
Temporal decay algorithm
-
Knowledge graph
Phase 2 (Complete) ✅
- JSONL storage
- LTM index
- Git integration
- Smart prompting documentation
- Maintenance CLI
- Memory consolidation (algorithmic merging)
Future Work
- Spaced repetition optimization
- Adaptive decay parameters
- Performance benchmarks
- LLM-assisted consolidation (optional enhancement)
Built with Claude Code 🤖
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。