Mnemos

Mnemos

A self-hosted, multi-context memory server that enables AI agents to search and retrieve information from local documents and crawled websites via MCP tools. It runs fully offline using Postgres and Ollama to provide secure, private knowledge management and retrieval-augmented generation.

Category
访问服务器

README

🧠 Mnemos

Self-hosted, Multi-context Memory Server for Developers

Mnemos is an MCP compatible knowledge server that turns your documentation piles into a multi context memory system. It organizes documents into isolated collections, eliminates redundant processing with content hashing, and runs fully offline using Postgres + pgvector and Ollama.

Features

  • Multi-context Collections: Isolate your memory by project (e.g., react-docs, rust-book, company-internal) with case insensitive search filtering.
  • Deterministic Re-ingestion: SHA-256 content hashing guarantees idempotent operation—skipping unchanged files and automatically re-chunking on diffs.
  • Enhanced Terminal UI: Explore your context with a full screen search interface, result navigation, and detailed chunk inspection modals.
  • Recursive Site Crawling: Ingest entire documentation sites with path based filtering (e.g., crawl only /learn on react.dev).
  • Stable Local Embeddings: Optimized for Ollama with persistent connections, automatic runner backoff, and load throttling.
  • Chunk Quality Control: Automatic noise filtering (minimum length thresholds + alphanumeric validation) ensures high quality retrieval.
  • 100% Private: Fully offline. Your context never leaves your local machine.

Quick Start

Prerequisites

  • Docker & Docker Compose
  • Python 3.11+
  • Ollama (for local embeddings)

1. Install Ollama & Pull Embedding Model

brew install ollama

ollama serve

ollama pull nomic-embed-text

2. Start the Database

cd docker
docker-compose up -d

3. Install Dependencies

python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

4. Start the Server

# Option A: Start via CLI (recommended)
python cli/mnemos.py server

# Option B: Run API directly (development)
uvicorn src.main:app --reload

5. Add Documents

python cli/mnemos.py add ./docs/my-document.pdf --collection my-project

# Or crawl a site
python cli/mnemos.py ingest https://react.dev/learn --path-filter /learn --collection react

6. Search

python cli/mnemos.py search "how to use useEffect"

CLI Commands

Command Description Flags
mnemos add <path> Add a document or directory -c <collection>, -r (recursive)
mnemos ingest <url> Ingest a URL or crawl a site -c <collection>, --path-filter
mnemos search <query> Search for relevant context -c <collection>, -k <limit>
mnemos list List all documents -c <collection>, -n <limit>
mnemos export <file> Backup knowledge base to JSON -c <collection>
mnemos delete <id> Delete a document -f (force)
mnemos server Start the API server --host, --port

API Endpoints

REST API

Mnemos provides a standard REST API for document management and operations.

Method Endpoint Description
POST /api/documents Upload a document
GET /api/documents List all documents
GET /api/collections List all unique collections
GET /api/documents/export Full JSON backup of chunks
DELETE /api/documents/{id} Delete a document
POST /api/search Vector similarity search
POST /api/ingest/url Ingest a single URL
POST /api/ingest/site Crawl a documentation site
GET /api/health Health & Stats check

MCP Endpoints

Mnemos exposes its retrieval capabilities via the Model Context Protocol (MCP), allowing AI agents to query it as an external context provider. Mnemos is designed to be stateless from the MCP client’s perspective; all persistence lives server-side.

Method Endpoint Description
GET /mcp/tools List available MCP tools
POST /mcp/call Execute an MCP tool

MCP Integration

Claude Desktop

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "mnemos": {
      "command": "curl",
      "args": ["-X", "POST", "http://localhost:8000/mcp/call", "-H", "Content-Type: application/json", "-d"]
    }
  }
}

Available MCP Tools

  • search_context: Search the knowledge base for relevant context
  • list_documents: List all documents in the knowledge base
  • get_document_info: Get detailed information about a document

Configuration

Environment variables (.env):

Variable Default Description
DATABASE_URL postgresql+asyncpg://... Postgres connection string
EMBEDDING_PROVIDER ollama ollama (local-first default) or openai
EMBEDDING_MODEL nomic-embed-text Ollama embedding model
OLLAMA_BASE_URL http://127.0.0.1:11434 Ollama API URL
CHUNK_SIZE 300 Target characters per chunk
CHUNK_OVERLAP 40 Overlap between chunks

Architecture

graph TD
    User([User CLI / App]) --> API[FastAPI Server]
    API --> DB[(PostgreSQL + pgvector)]
    API --> Ollama[Ollama Local Embeddings]
    
    subgraph Ingestion Pipeline
        API --> Parser[Document Parser]
        Parser --> Chunker[Text Chunker]
        Chunker --> HashCheck[SHA-256 Content Hash]
        HashCheck --> Embedding[Vector Generation]
    end
    
    subgraph Retrieval
        API --> Search[Vector Search]
        Search --> Context[Context Assembler]
    end

Design Principles

  • Local-first by default: All heavy lifting (vectors/search) happens on your hardware.
  • Deterministic ingestion: SHA-256 hashing ensures idempotency and safe re-runs.
  • Explicit context isolation: Multi-collection support prevents cross-project context pollution.
  • Inspectable retrieval: Similarity scores and chunk metadata are exposed to build trust.
  • Zero vendor lock-in: Standards-based tech stack (Postgres, MCP, REST).

Supported Embedding Models

Model Dimensions Notes
nomic-embed-text 768 Default, good balance
mxbai-embed-large 1024 Higher quality
all-minilm 384 Faster, smaller

Security Posture

  • Local-Only: By default, Mnemos binds to 0.0.0.0 but does not include authentication. It is intended for local use or behind a secure tunnel.
  • No External Calls: All vector generation and retrieval happen locally. No telemetry or document data is sent to external servers.
  • SQLi Prevention: Uses SQLAlchemy ORM and parameterized queries for all database interactions.

Non-Goals

  • Cloud Hosting: Mnemos is not designed to be a multi-tenant cloud SaaS.
  • Advanced LLM Orchestration: It focuses on context provision, not on being a full RAG agent.
  • Browser Automation: Ingestion is via CLI or URL crawler, not a GUI automation tool.

Development

black src/ cli/

pytest tests/

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选