Mobi MCP Server
A Model Context Protocol server that enables AI models to interact with Mobi instances, providing structured data exchange and command execution for ontology management, data retrieval, and content creation.
README
Mobi MCP Server
This is a Model Context Protocol server that will allow agentic interfacing with a given instance of Mobi (GitHub).
<img src="./logo.png" alt="mobi-mcp-logo" style="width: 80px;" />
Prerequisites
- Python 3.10 or higher (required for MCP package)
- A running Mobi instance
Model Context Protocol (MCP) is a standardized communication protocol that enables AI models to interact with external tools and services. When integrated with Mobi, MCP provides several key benefits:
- Seamless interaction between AI models and Mobi's functionality
- Structured data exchange and command execution
- Real-time updates and bidirectional communication
- Enhanced automation capabilities through standardized interfaces
- Platform-agnostic integration with various AI models and services
Installation
-
Clone the repository:
git clone <repository-url> cd mobi-mcp -
Create a Python virtual environment:
python3.12 -m venv .venvNote: If you don't have Python 3.10+, install it first:
- macOS:
brew install python@3.12
- macOS:
-
Activate the virtual environment:
- macOS/Linux:
source .venv/bin/activate
- macOS/Linux:
-
Install dependencies:
pip install -r requirements.txt
Leveraging the MCP Server
The easiest way to quickly try this is to hook the MCP server into Claude Desktop and then
configure the application to use your MCP server by modifying the
~/Library/Application\ Support/Claude/claude_desktop_config.json file with a JSON snippet like this:
{
"mcpServers": {
"mobi": {
"command": "/Users/{username}/git/mobi-mcp/.venv/bin/python",
"args": ["/Users/{username}/git/mobi-mcp/src/mobi-mcp.py"],
"env": {
"MOBI_BASE_URL": "https://localhost:8443",
"MOBI_USERNAME": "admin",
"MOBI_PASSWORD": "admin",
"MOBI_IGNORE_CERT": "true"
}
}
}
}
-- Note: You'll have to adjust the paths as absolute paths are required :)
Claude Desktop leverages the stdio MCP transport, but this server also supports SSE as well (you can run the mobi-mcp
python script with the argument --sse).
This also assumes that you are running an instance of Mobi as well. If you want to try and run one locally, see instructions HERE.
Configuration
The MCP server requires the following environment variables:
MOBI_BASE_URL: The base URL of your Mobi instance (e.g.,https://localhost:8443)MOBI_USERNAME: Username for Mobi authenticationMOBI_PASSWORD: Password for Mobi authenticationMOBI_IGNORE_CERT: Set to"true"to ignore SSL certificate verification (useful for self-signed certificates)
Repository Structure
The repository is organized to maintain a clean separation between the Mobi API interaction layer and the MCP protocol implementation:
src/mobi.py- Contains the core Mobi API client functionality, handling authentication, API calls, and data processingsrc/mobi-mcp.py- The main MCP server implementation that bridges Mobi functionality with the Model Context ProtocolDockerfile- Enables containerized deployment of the MCP serverMakefile- Provides convenient commands for environment setup and container managementrequirements.txt- Lists all Python package dependencies needed for the project
Current Tools
The Mobi MCP Server exposes the following tools for interacting with your Mobi instance:
Search and Discovery Tools
record_search
Search the Mobi catalog for records matching specified criteria.
- Parameters:
offset(int): Starting index for paginationlimit(int): Maximum number of records to retrievesearch_text(str, optional): Text to search for in recordskeywords(list[str], optional): Keywords to match against recordstypes(list[str], optional): Record types to filter by. Valid types:http://mobi.com/ontologies/ontology-editor#OntologyRecord(Ontology/Vocabulary)http://mobi.com/ontologies/shapes-graph-editor#ShapesGraphRecord(SHACL)http://mobi.com/ontologies/delimited#MappingRecord(Mappings)http://mobi.com/ontologies/dataset#DatasetRecord(Datasets)
entity_search
Search the Mobi catalog for records whose metadata contain a specified string.
- Parameters:
search_for(str): Substring to search for within entities' metadataoffset(int): Starting point within the result setlimit(int): Maximum number of entities to returntypes(list[str], optional): Entity types to filter bykeywords(list[str], optional): Keywords to filter by
Data Retrieval Tools
fetch_ontology_data
Fetch ontology data for a given ontology record IRI.
- Parameters:
ontology_iri(str): The IRI of the record containing the ontology data (not the ontology IRI itself)
- Note: Use the record IRI from search results, typically in the format
https://mobi.com/records#<uuid>
get_shapes_graph
Retrieve the shapes graph for a specified record.
- Parameters:
record_id(str): Unique identifier for the recordbranch_id(str, optional): Branch identifier within the recordcommit_id(str, optional): Commit identifier to target
Content Creation Tools
create_ontology_record
Create a new ontology record from RDF data and metadata.
- Parameters:
rdf_string(str): The RDF data as a stringrdf_format(str): Format of the RDF data (e.g., "xml", "turtle")title(str): Title of the ontologydescription(str): Textual description of the ontologymarkdown_description(str, optional): Markdown version of the descriptionkeywords(list[str], optional): Keywords associated with the ontology
- Note: Confirmation with the user is recommended before creating new records
Version Control Tools
create_branch_on_record
Create a new branch on an existing record.
- Parameters:
record_iri(str): IRI of the recordtitle(str): Title of the new branchdescription(str): Description of the new branchcommit_iri(str): IRI of the commit to use as reference
Usage Notes
- All tools interact with Mobi's git-inspired versioning system
- Record IRIs are typically returned from search operations
- The server follows semantic versioning practices similar to git repositories
- Always verify record and branch IRIs before performing write operations
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。