Mock Store MCP Server

Mock Store MCP Server

Enables AI agents to explore and query a mock e-commerce store's data including customers, products, inventory, and orders through conversational interactions backed by PostgreSQL.

Category
访问服务器

README

MCP Mock Store Example

This repository contains an end-to-end example of a fastMCP server that exposes a mock e-commerce store backed by a FastAPI application and a PostgreSQL database. It demonstrates how to share the same data source between a REST API and Model Context Protocol (MCP) tools so that conversational AI agents can explore store information such as customers, inventory, and orders.

Project layout

.
├── app/                  # FastAPI application (SQLAlchemy models, schemas, CRUD helpers)
├── mcp_server/           # fastMCP server exposing store data as tools
├── sql/                  # SQL scripts for schema and seed data
├── docker-compose.yml    # Local PostgreSQL instance with preloaded data
├── requirements.txt      # Python dependencies for both servers
└── .env.example          # Example environment variables

Prerequisites

  • Python 3.11+
  • Docker and Docker Compose (v2 or newer)
  • pip for installing Python dependencies

1. Start the database

docker compose up -d

The PostgreSQL container mounts the sql/ directory into /docker-entrypoint-initdb.d, so the schema (create_tables.sql) and sample data (seed_data.sql) are loaded automatically the first time the container starts.

2. Configure environment variables

Copy the example environment file and adjust it if you changed any credentials or hostnames:

cp .env.example .env

Both the FastAPI service and the fastMCP server read the DATABASE_URL environment variable. The default connection string assumes you are running locally with the docker-compose.yml configuration.

3. Install dependencies

python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

4. Run the FastAPI backend

uvicorn app.main:app --reload

Example endpoints

  • GET /customers – list all customers
  • GET /customers/{id} – retrieve a single customer
  • GET /products – browse available products
  • GET /inventory – inspect inventory levels
  • GET /orders – view orders including nested line items
  • GET /orders/{id} – fetch a specific order

5. Run the fastMCP server

python -m mcp_server

The server registers the following tools:

Tool name Description
list_customers Returns all customers and their metadata.
list_products Lists available products.
list_inventory Provides current inventory levels.
list_orders Retrieves orders with customer and line item data.
get_order Returns a single order by ID, or an error if missing.
get_store_summary Aggregates counts and high-level metrics.

Each tool responds with JSON derived from the same SQLAlchemy models used by the FastAPI backend, ensuring consistent representations across HTTP and MCP interfaces.

6. Connect from popular AI chatbots

Below are quick-start notes for common MCP-compatible clients. Substitute the path to your virtual environment's Python interpreter if different (e.g., .venv/bin/python).

Anthropic Claude Desktop

  1. Open Claude Desktop and navigate to Settings → Configure MCP Servers.
  2. Add a new server with:
    • Command: python
    • Arguments: -m mcp_server
    • Working directory: the root of this repository.
  3. Ensure the DATABASE_URL environment variable is available to Claude (e.g., by launching Claude from a shell session where it is exported).
  4. Claude can now call tools such as get_store_summary during conversations.

Cursor IDE

  1. Open Cursor and run the command Cursor: Configure MCP Servers.
  2. Create an entry with the command python and arguments -m mcp_server.
  3. Optionally specify environment variables via the configuration panel so the MCP server can reach the PostgreSQL instance.
  4. Use the “Connect MCP Server” command to make tools available in the chat sidebar.

VS Code + Continue

  1. Install the Continue extension (version 0.9.0+).

  2. Open the Continue settings (continue.json) and add:

    {
      "servers": [
        {
          "name": "mock-store",
          "command": "python",
          "args": ["-m", "mcp_server"],
          "cwd": "${workspaceFolder}",
          "env": {
            "DATABASE_URL": "postgresql+psycopg2://mcp_user:mcp_password@localhost:5432/mcp_store"
          }
        }
      ]
    }
    
  3. Restart Continue; the mock store tools will appear in the MCP tool palette.

OpenAI Desktop / ChatGPT Desktop (beta MCP support)

  1. Launch the client from a terminal with the virtual environment activated so the MCP server dependencies are available.
  2. In the MCP configuration UI, add a custom server pointing to python -m mcp_server.
  3. Use the UI to map environment variables or rely on your shell environment.

Tip: If a client requires an absolute path to the interpreter, run which python (Linux/macOS) or where python (Windows) inside the virtual environment and paste that path into the MCP configuration.

Database management

  • Reset data: stop the containers (docker compose down), delete the volume (docker volume rm mcp_postgres-data), and start again.

  • Manual migrations: you can rerun the SQL scripts with psql:

    psql postgresql://mcp_user:mcp_password@localhost:5432/mcp_store -f sql/create_tables.sql
    psql postgresql://mcp_user:mcp_password@localhost:5432/mcp_store -f sql/seed_data.sql
    

Testing the MCP tools manually

Once the server is running, you can issue direct requests with the fastmcp client utilities:

python -m fastmcp.client --command "get_store_summary"

Refer to the fastmcp documentation for more advanced usage such as streaming outputs or structured arguments.

License

This example is provided under the MIT license. Use it as a starting point for your own MCP-integrated services.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选