Model Context Protocol (MCP) Server

Model Context Protocol (MCP) Server

A Python implementation of the MCP server that enables AI models to connect with external tools and data sources through a standardized protocol, supporting tool invocation and resource access via JSON-RPC.

Category
访问服务器

README

Model Context Protocol (MCP) Python Implementation

This project implements a functioning Model Context Protocol (MCP) server and client in Python, following the Anthropic MCP specification. It demonstrates the key patterns of the MCP protocol through a simple, interactive example.

What is MCP?

The Model Context Protocol (MCP) is an open standard built on JSON-RPC 2.0 for connecting AI models to external data sources and tools. It defines a client-server architecture where an AI application communicates with one or more MCP servers, each exposing capabilities such as:

  • Tools: Executable functions that perform actions
  • Resources: Data sources that provide information
  • Prompts: Predefined templates or workflows

MCP standardizes how these capabilities are discovered and invoked, serving as a "USB-C for AI" that allows models to interact with external systems in a structured way.

Project Structure

  • server/: MCP server implementation
    • server.py: WebSocket server that handles MCP requests and provides sample tools/resources
  • client/: MCP client implementation
    • client.py: Demo client that connects to the server and exercises all MCP capabilities

Features Demonstrated

This implementation showcases the core MCP protocol flow:

  1. Capability Negotiation: Client-server handshake via initialize
  2. Capability Discovery: Listing available tools and resources
  3. Tool Invocation: Calling the add_numbers tool with parameters
  4. Resource Access: Reading text content from a resource

Setup

  1. Create a virtual environment:

    python3 -m venv .venv
    source .venv/bin/activate
    
  2. Install dependencies:

    pip install -r requirements.txt
    

Usage

  1. Start the MCP server (in one terminal):

    python server/server.py
    
  2. Run the MCP client (in another terminal):

    python client/client.py
    

The client will connect to the server, perform the MCP handshake, discover capabilities, and demonstrate invoking tools and accessing resources with formatted output.

How It Works

MCP Server

The server:

  • Accepts WebSocket connections
  • Responds to JSON-RPC requests following the MCP specification
  • Provides a sample tool (add_numbers)
  • Provides a sample resource (example.txt)
  • Supports the MCP handshake and capability discovery

MCP Client

The client:

  • Connects to the server via WebSocket
  • Performs the MCP handshake
  • Discovers available tools and resources
  • Demonstrates calling a tool and reading a resource
  • Presents the results in a formatted display

Protocol Details

MCP implements these key methods:

Method Description
initialize Handshake to establish capabilities
tools/list List available tools
tools/call Call a tool with arguments
resources/list List available resources
resources/read Read resource content
prompts/list List available prompts

Extending the Project

You can extend this implementation by:

  • Adding more tools with different capabilities
  • Adding dynamic resources that change on each read
  • Implementing prompt templates for guided interactions
  • Creating more interactive client applications

References

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选