Model Context Protocol Server
A middleware server that intelligently routes AI model queries to appropriate data sources, providing contextual information to enhance AI responses.
README
Model Context Protocol (MCP) Server
A FastAPI-based server implementing the Model Context Protocol for providing contextual information to AI models. This server acts as a middleware between AI models and various data sources, intelligently routing queries to the most appropriate data provider.
Features
- Intelligent query routing based on query analysis
- Support for multiple data sources (Database, GraphQL, REST)
- Integration with Ollama models (Mistral, Qwen, Llama2)
- Environment-aware configuration (Development/Production)
- Comprehensive logging and error handling
- Health check endpoints
- Mock data support for development
Prerequisites
- Python 3.8+
- Ollama installed and running locally
- Required Ollama models:
- mistral
- qwen
- llama2
Installation
- Clone the repository:
git clone <repository-url>
cd mcp-server
- Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Create a
.envfile:
cp .env.example .env
- Update the
.envfile with your configuration:
ENVIRONMENT=development
OLLAMA_MODEL=mistral
OLLAMA_BASE_URL=http://localhost:11434
Running the Server
- Start Ollama (if not already running):
ollama serve
- Start the MCP server:
python main.py
The server will be available at http://localhost:8000
API Endpoints
Get Context
curl -X POST http://localhost:8000/context \
-H "Content-Type: application/json" \
-d '{
"query": "Tell me about iPhone 15",
"model": "mistral"
}'
List Available Models
curl http://localhost:8000/models
Health Check
curl http://localhost:8000/health
Project Structure
mcp-server/
├── context_providers/ # Data source providers
│ ├── database.py # Database provider
│ ├── graphql.py # GraphQL provider
│ ├── rest.py # REST API provider
│ └── provider_factory.py
├── model_providers/ # AI model providers
│ ├── base.py # Base model provider
│ ├── ollama.py # Ollama integration
│ └── provider_factory.py
├── main.py # FastAPI application
├── query_analyzer.py # Query analysis logic
├── logger_config.py # Logging configuration
├── requirements.txt # Project dependencies
└── README.md # Project documentation
Development
Adding New Providers
- Create a new provider class in the appropriate directory
- Implement the required interface methods
- Register the provider in the factory
Adding New Models
- Add the model to the
AVAILABLE_MODELSdictionary inmodel_providers/ollama.py - Update the model validation logic if needed
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。