Model Context Protocol Server

Model Context Protocol Server

Provides a standardized protocol for tool invocation, enabling an AI system to search the web, retrieve information, and provide relevant answers through integration with LangChain, RAG, and Ollama.

Category
访问服务器

README

Search Engine with RAG and MCP

A powerful search engine that combines LangChain, Model Context Protocol (MCP), Retrieval-Augmented Generation (RAG), and Ollama to create an agentic AI system capable of searching the web, retrieving information, and providing relevant answers.

Features

  • Web search capabilities using the Exa API
  • Web content retrieval using FireCrawl
  • RAG (Retrieval-Augmented Generation) for more relevant information extraction
  • MCP (Model Context Protocol) server for standardized tool invocation
  • Support for both local LLMs via Ollama and cloud-based LLMs via OpenAI
  • Flexible architecture supporting direct search, agent-based search, or server mode
  • Comprehensive error handling and graceful fallbacks
  • Python 3.13+ with type hints
  • Asynchronous processing for efficient web operations

Architecture

This project integrates several key components:

  1. Search Module: Uses Exa API to search the web and FireCrawl to retrieve content
  2. RAG Module: Embeds documents, chunks them, and stores them in a FAISS vector store
  3. MCP Server: Provides a standardized protocol for tool invocation
  4. Agent: LangChain-based agent that uses the search and RAG capabilities

Project Structure

search-engine-with-rag-and-mcp/
├── LICENSE              # MIT License
├── README.md            # Project documentation
├── data/                # Data directories
├── docs/                # Documentation
│   └── env_template.md  # Environment variables documentation
├── logs/                # Log files directory (auto-created)
├── src/                 # Main package (source code)
│   ├── __init__.py      
│   ├── core/            # Core functionality
│   │   ├── __init__.py
│   │   ├── main.py      # Main entry point
│   │   ├── search.py    # Web search module
│   │   ├── rag.py       # RAG implementation
│   │   ├── agent.py     # LangChain agent
│   │   └── mcp_server.py # MCP server implementation
│   └── utils/           # Utility modules
│       ├── __init__.py
│       ├── env.py       # Environment variable loading
│       └── logger.py    # Logging configuration
├── pyproject.toml       # Poetry configuration
├── requirements.txt     # Project dependencies
└── tests/               # Test directory

Getting Started

Prerequisites

  • Python 3.13+
  • Poetry (optional, for development)
  • API keys for Exa and FireCrawl
  • (Optional) Ollama installed locally
  • (Optional) OpenAI API key

Installation

  1. Clone the repository
git clone https://github.com/yourusername/search-engine-with-rag-and-mcp.git
cd search-engine-with-rag-and-mcp
  1. Install dependencies
# Using pip
pip install -r requirements.txt

# Or using poetry
poetry install
  1. Create a .env file (use docs/env_template.md as a reference)

Usage

The application has three main modes of operation:

1. Direct Search Mode (Default)

# Using pip
python -m src.core.main "your search query"

# Or using poetry
poetry run python -m src.core.main "your search query"

2. Agent Mode

python -m src.core.main --agent "your search query"

3. MCP Server Mode

python -m src.core.main --server

You can also specify custom host and port:

python -m src.core.main --server --host 0.0.0.0 --port 8080

Using Ollama (Optional)

To use Ollama for local embeddings and LLM capabilities:

  1. Install Ollama: https://ollama.ai/
  2. Pull a model:
ollama pull mistral:latest
  1. Set the appropriate environment variables in your .env file:
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=mistral:latest

Development

This project follows these best practices:

  • Code formatting: Black and isort for consistent code style
  • Type checking: mypy for static type checking
  • Linting: flake8 for code quality
  • Testing: pytest for unit and integration tests
  • Environment Management: python-dotenv for managing environment variables
  • Logging: Structured logging to both console and file

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选