Model Coupling Platform Server
A FastAPI-based JSON-RPC 2.0 server implementation that enables users to work with HDF5 files, submit Slurm jobs, retrieve CPU information, and visualize CSV data through standardized API endpoints.
README
MCP Server Implementation
Name: Esteban Nicolas Student ID: A20593170
I. Implemented MCP Capabilities
1 Data Resources 1.1 HDF5 File Listing
- Lists mock HDF5 files in a directory structure
- Parameters:
path_pattern(optional file path pattern)
2 Tools 2.1 Slurm Job Submission
- Simulates job submission to a Slurm scheduler
- Parameters:
script_path(required),cores(optional, default=1)
2.2 CPU Core Reporting
- Reports number of CPU cores available on the system
- No parameters required
2.3 CSV Visualization
- Plots two columns from a CSV file (defaults to first two columns)
- Parameters:
csv_path(required),column x,column y(both optional)
II. Setup Instructions
- Create virtual environment
uv venv -p python3.10 .venv\Scripts\activate # On Unix: source .venv/bin/activate
- Install dependencies
uv sync uv lock
- Environment configuration The project uses pyproject.toml for dependency management. Key dependencies include:
FastAPI
Uvicorn
Pydantic
Pandas
Matplotlib
Pytest
Pytest-ascyncio
- Running the MCP Server
Start the server cd src uvicorn server:app --reload
The server will be available at:
API endpoint: http://localhost:8000/mcp Health check: http://localhost:8000/health
III Testing
- Run all tests:
pytest tests/ Run specific test file:
pytest tests/test_capabilities_plot_vis.py pytest tests/test_capabilities_hdf5.py pytest tests/test_capabilities_cpu_core.py pytest tests/test_capabilities_slurm.py pytest tests/test_mcp_handler.py
- Example Requests 2.1 List available resources
curl -X POST http://localhost:8000/mcp
-H "Content-Type: application/json"
-d '{"jsonrpc":"2.0","method":"mcp/listResources","id":1}'
2.2 List HDF5 files
curl -X POST http://localhost:8000/mcp
-H "Content-Type: application/json"
-d '{"jsonrpc":"2.0","method":"mcp/callTool","params":{"tool":"hdf5_file_listing","path_pattern":"/data/sim_run_123"},"id":2}'
2.3 Submit Slurm job
curl -X POST http://localhost:8000/mcp
-H "Content-Type: application/json"
-d '{"jsonrpc":"2.0","method":"mcp/callTool","params":{"tool":"slurm_job_submission","script_path":"/jobs/analysis.sh","cores":4},"id":3}'
2.4 Plot CSV columns
curl -X POST http://localhost:8000/mcp
-H "Content-Type: application/json"
-d '{"jsonrpc":"2.0","method":"mcp/callTool","params":{"tool":"plot_vis_columns","csv_path":"data.csv","column x":"time","column y":"temperature"},"id":4}'
IV Implementation Notes
- Mock Implementations:
-HDF5 file listing uses a simulated directory structure -Slurm job submission generates mock job IDs -CPU core reporting uses os.cpu_count()
- CSV Visualization:
-Creates plots in a plots_results directory -Defaults to first two columns if none specified -Returns path to generated PNG file
- Error Handling:
-Proper JSON-RPC 2.0 error responses -Input validation for all parameters -Graceful handling of missing files/invalid paths
GITHUB: https://github.com/EstebanIIT/cs550_MCP.git
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。