Moku MCP Server
Enables LLM control of Moku devices through network discovery, connection management, configuration deployment, and signal routing. Supports graceful ownership handoff between different interfaces (CLI, iPad, LLM) for seamless workflow integration.
README
moku-mcp
Model Context Protocol (MCP) server for Moku device control.
Overview
This MCP server provides LLM-friendly tools for controlling Moku devices:
- Device Discovery: Find Moku devices on the network
- Connection Management: Attach/detach with graceful ownership handoff
- Configuration Deployment: Push
MokuConfigmodels to hardware - Routing Control: Configure MCC signal routing
- Metadata Queries: Get device info and slot status
Architecture
Session Model: Stateful connection management
attach(device_id)→ Connect and maintain ownershipdetach()→ Release ownership (allows iPad/CLI handoff)
Graceful Handoff: Supports common workflow where ownership moves between:
- Machine A (CLI) → iPad (GUI) → Machine B (LLM) → ...
MokuConfig-Driven: Uses moku-models package for type-safe configuration.
Installation
# Clone repository
git clone https://github.com/sealablab/moku-mcp.git
cd moku-mcp
# Install with uv (recommended)
uv pip install -e .
# Or with pip
pip install -e .
Usage
Running the MCP Server
# Run server via stdio (MCP standard)
python -m moku_mcp
# Or with uv
uv run python -m moku_mcp
Integration with Claude Desktop
Add to your Claude Desktop config file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"moku": {
"command": "uv",
"args": ["run", "python", "-m", "moku_mcp"],
"cwd": "/path/to/moku-mcp"
}
}
}
Using the Session Context Manager
For safe device management with automatic cleanup:
from moku_mcp.session import MokuSession
async def deploy_config_safely(device_id: str, config: dict):
async with MokuSession(device_id) as moku:
# Device is automatically connected
result = await moku.push_config(config)
# Device is automatically released even if error occurs
return result
MCP Tools
1. discover_mokus()
Discover Moku devices on network via zeroconf.
Returns: List of devices with IP, name, serial number
2. attach_moku(device_id)
Connect to Moku device and assume ownership.
Args:
device_id(str): IP address, device name, or serial number
Returns: Connection status and device metadata
3. release_moku()
Disconnect and release ownership.
Returns: Disconnect status
4. push_config(config)
Deploy MokuConfig to connected device.
Args:
config(dict): MokuConfig serialized as dictionary
Returns: Deployment status
Example:
config = {
"platform": {...},
"slots": {
1: {
"instrument": "CloudCompile",
"bitstream": "path/to/bitstream.tar"
}
},
"routing": [
{"source": "Slot1OutA", "destination": "Output1"}
]
}
5. get_config()
Retrieve current device configuration.
Returns: MokuConfig as dict
6. set_routing(connections)
Configure MCC signal routing.
Args:
connections(list): List of MokuConnection dicts
Example:
connections = [
{"source": "Input1", "destination": "Slot1InA"},
{"source": "Slot1OutA", "destination": "Output1"}
]
7. get_device_info()
Query device metadata.
Returns: Dict with name, serial, IP, platform type
8. list_slots()
List configured instrument slots.
Returns: Dict of slot numbers to instrument info
Implementation Status
✅ Core Implementation Complete
All 8 MCP tools are fully implemented:
- Device discovery via zeroconf
- Connection management with singleton pattern
- Configuration deployment (CloudCompile & Oscilloscope)
- Signal routing configuration
- Device metadata queries
- Session context manager for safe cleanup
Development
# Install dev dependencies
uv pip install -e ".[dev]"
# Run tests (when implemented)
pytest
# Format code
black src/
ruff check src/
Dependencies
1st Party:
moku-models- Pydantic models for Moku configurationmoku- Official Moku hardware API
3rd Party:
mcp- Model Context Protocol SDKpydantic- Data validationloguru- Loggingzeroconf- Device discovery via mDNS/Bonjour
Next Steps
See IMPLEMENTATION_GUIDE.md for:
- MCP SDK setup
- Tool implementation patterns
- Testing strategies
- Deployment workflows
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。