Mongo-MCP
Enables LLMs to interact with MongoDB databases through a complete suite of CRUD operations, administrative tasks, and index management tools. It supports database and collection handling, aggregation pipelines, and comprehensive server monitoring via the Model Context Protocol.
README
Mongo-MCP
English | 简体中文
A Machine Chat Protocol (MCP) service for MongoDB operations. This service provides a comprehensive set of tools that allow Large Language Models (LLMs) to interact with MongoDB databases through complete CRUD operations, administrative tasks, and advanced features.
Requirements
- Python 3.10 or above
- A running MongoDB database service
- It is recommended to use uv to run the program
🚀 Features
📊 Database Management Tools
list_databases- List all databasescreate_database- Create new databasedrop_database- Delete databaseget_database_stats- Get database statistics
📦 Collection Management Tools
list_collections- List all collections in a databasecreate_collection- Create new collection (with optional settings)drop_collection- Delete collectionrename_collection- Rename collectionget_collection_stats- Get collection statistics
📄 Document CRUD Operations
insert_document- Insert single documentinsert_many_documents- Batch insert multiple documentsfind_documents- Query documents (supports sorting, projection, limit)find_one_document- Query single documentcount_documents- Count documents matching queryupdate_document- Update documents (single or batch)replace_document- Replace documentdelete_document- Delete documents (single or batch)
🔍 Index Management Tools
list_indexes- List all indexes for a collectioncreate_index- Create regular indexcreate_text_index- Create text search indexcreate_compound_index- Create compound indexdrop_index- Delete indexreindex_collection- Rebuild all indexes for a collection
📈 Aggregation Operations
aggregate_documents- Execute aggregation pipeline operationsdistinct_values- Get distinct values for a field
🔧 Monitoring and Administrative Tools
get_server_status- Get MongoDB server statusget_replica_set_status- Get replica set statusping_database- Test database connectiontest_mongodb_connection- Comprehensive connection testget_connection_details- Get detailed connection information
🛠️ Technology Stack
- Python: Primary programming language
- FastMCP: MCP Python SDK for automatic tool definition generation
- PyMongo: Official MongoDB Python driver
- uv: Modern Python package management tool
Usage
Run directly with uvx
uvx run mongo-mcp
The server uses the stdio transport method, making it suitable for integration with MCP clients that support this transport method.
Cursor Example Configuration
If you use Cursor as your development environment, you can add the following configuration to your .cursor/mcp.json file for local debugging:
{
"mcpServers": {
"mongo-mcp": {
"command": "uvx",
"args": [
"mongo-mcp"
],
"env": {
"MONGODB_URI": "mongodb://localhost:27017",
"MONGODB_DEFAULT_DB": "your_database_name",
"LOG_LEVEL": "INFO"
}
}
}
}
Environment Variables
Basic Configuration
MONGODB_URI: MongoDB connection string (default: "mongodb://localhost:27017")MONGODB_DEFAULT_DB: Default database name (optional)
Connection Pool Configuration
MONGODB_MIN_POOL_SIZE: Minimum connection pool size (default: 0)MONGODB_MAX_POOL_SIZE: Maximum connection pool size (default: 100)MONGODB_MAX_IDLE_TIME_MS: Maximum idle time in milliseconds (default: 30000)
Timeout Configuration
MONGODB_SERVER_SELECTION_TIMEOUT_MS: Server selection timeout (default: 30000)MONGODB_SOCKET_TIMEOUT_MS: Socket timeout (default: 0 - no timeout)MONGODB_CONNECT_TIMEOUT_MS: Connection timeout (default: 20000)
Security Configuration
MONGODB_TLS_ENABLED: Enable TLS connection (default: false)MONGODB_AUTH_SOURCE: Authentication source (default: admin)MONGODB_AUTH_MECHANISM: Authentication mechanism (SCRAM-SHA-1, SCRAM-SHA-256, etc.)
Performance Settings
MONGODB_READ_PREFERENCE: Read preference (default: primary)MONGODB_WRITE_CONCERN_W: Write concern (default: 1)MONGODB_READ_CONCERN_LEVEL: Read concern level (default: local)
Logging Configuration
LOG_LEVEL: Logging level (default: "INFO")- Available values: DEBUG, INFO, WARNING, ERROR, CRITICAL
LOG_MAX_FILE_SIZE: Maximum log file size in bytes (default: 10MB)LOG_BACKUP_COUNT: Number of backup log files (default: 5)
Feature Flags
ENABLE_DANGEROUS_OPERATIONS: Enable potentially dangerous operations (default: false)ENABLE_ADMIN_OPERATIONS: Enable administrative operations (default: true)ENABLE_INDEX_OPERATIONS: Enable index operations (default: true)
Development Guide
- Clone the repository
git clone https://github.com/441126098/mongo-mcp.git
cd mongo-mcp
- Install development dependencies
# Using uv (recommended)
uv sync
# Or using pip
pip install -e ".[dev]"
- Run tests
uv run pytest tests/ -v
- Code Structure
src/mongo_mcp/server.py: MCP server implementationsrc/mongo_mcp/db.py: Core MongoDB operations implementationsrc/mongo_mcp/config.py: Configuration managementsrc/mongo_mcp/tools/: MCP tools implementationdatabase_tools.py: Database and collection managementdocument_tools.py: Document CRUD operationsindex_tools.py: Index managementaggregation_tools.py: Aggregation operationsadmin_tools.py: Administrative and monitoring tools
src/mongo_mcp/utils/: Utility modulestests/: Test cases
Testing
The project includes comprehensive test coverage:
- Unit tests for all tool modules
- Integration tests with MongoDB
- Mock tests for isolated component testing
Run the test suite:
# Run all tests
uv run pytest
# Run with verbose output
uv run pytest -v
# Run specific test file
uv run pytest tests/test_tools.py
Logging
Log files are stored in the logs directory by default. The logging system supports:
- Configurable log levels
- File rotation based on size
- UTF-8 encoding support
- Structured logging with function names and line numbers
License
MIT
Contributing
Contributions via Issues and Pull Requests are welcome. Before submitting a PR, please ensure:
- All tests pass (
uv run pytest) - Appropriate test cases are added
- Documentation is updated
- Code follows the existing style patterns
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。