Mood Playlist MCP Server
Generates personalized music playlists based on mood analysis using AI sentiment detection and emoji understanding. Integrates with Last.fm API to create playlists with multi-language support and provides streaming links for Spotify, Apple Music, and YouTube.
README
Mood Playlist MCP Server
A Model Context Protocol (MCP) server that generates mood-based music playlists using AI sentiment analysis and the Last.fm API. The server analyzes user queries with emojis, natural language, and preferences to create personalized playlists.
Features
- 🎭 AI-Powered Mood Analysis: Uses Hugging Face transformers for sentiment and emotion detection
- 🌍 Multi-language Support: Supports Hindi, English, Punjabi, Bengali, Tamil, and more
- 😀 Emoji Understanding: Analyzes emojis to enhance mood detection
- 🎵 Smart Playlist Generation: Creates playlists using Last.fm's extensive music database
- 🔗 Platform Integration: Provides links for Spotify, Apple Music, YouTube, and Last.fm
- ⚡ FastAPI Integration: Full REST API with Swagger documentation
Prerequisites
- Python 3.8+
- Last.fm API Account: Get your API key and secret from Last.fm API
Installation
-
Clone or download the code files
-
Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
# Copy the example environment file
cp .env.example .env
# Edit .env with your Last.fm credentials
LASTFM_API_KEY=your_actual_api_key
LASTFM_SHARED_SECRET=your_actual_shared_secret
Running the Server
Option 1: As FastAPI Application (Recommended for testing)
# Run with uvicorn
uvicorn main:mcp.app --host 127.0.0.1 --port 8086 --reload
# Or run directly
python main.py
Then access:
- Swagger UI: http://127.0.0.1:8086/docs
- OpenAPI JSON: http://127.0.0.1:8086/openapi.json
Option 2: As MCP Server
The server is compatible with MCP clients. Configure your MCP client to connect to:
- Host: 127.0.0.1
- Port: 8086
API Endpoints
1. Generate Mood Playlist
POST /tools/generate_mood_playlist
Generate a playlist based on mood query.
Request Body:
{
"query": "I want a 40 minutes playlist of hindi songs that makes me feel 😎"
}
Response: Complete playlist with streaming platform links and track list.
2. Get Supported Options
POST /tools/get_supported_options
Get available languages, genres, and mood categories.
3. Analyze Mood Only
POST /tools/analyze_mood_only
Analyze mood and emotions without generating a playlist.
Request Body:
{
"query": "I'm feeling really happy today 😊"
}
Example Queries
"I want a 40 minutes playlist of hindi songs that makes me feel 😎""Generate a sad english playlist for 1 hour""Create an energetic punjabi playlist with 10 songs""I need romantic bollywood music for 30 minutes""Make me a chill playlist 😌 for studying"
Supported Languages
- Hindi (हिंदी)
- English
- Punjabi (ਪੰਜਾਬੀ)
- Bengali (বাংলা)
- Tamil (தமிழ்)
- Telugu (తెలుగు)
- Marathi (मराठी)
- Gujarati (ગુજરાતી)
- Spanish
- French
- Korean
- Japanese
Mood Categories
- Happy
- Sad
- Angry
- Excited
- Calm
- Romantic
- Nostalgic
- Energetic
- Neutral
Troubleshooting
Common Issues
-
"Missing required environment variables"
- Ensure LASTFM_API_KEY and LASTFM_SHARED_SECRET are set in your .env file
-
Model loading errors
- The server has fallback modes if AI models fail to load
- Check internet connection for initial model downloads
-
No tracks found
- Verify Last.fm API credentials are correct
- Try simpler queries with common genres
-
Port already in use
- Change the port in main.py or kill existing processes on port 8086
Testing the API
Use the Swagger UI at http://127.0.0.1:8086/docs to test endpoints interactively, or use curl:
# Test playlist generation
curl -X POST "http://127.0.0.1:8086/tools/generate_mood_playlist" \
-H "Content-Type: application/json" \
-d '{"query": "happy bollywood songs for 30 minutes"}'
# Test supported options
curl -X POST "http://127.0.0.1:8086/tools/get_supported_options" \
-H "Content-Type: application/json" \
-d '{}'
Architecture
- config.py: Configuration management and settings
- mood_analyzer.py: AI-powered mood and sentiment analysis
- playlist_generator.py: Last.fm API integration and playlist creation
- main.py: FastMCP server setup and tool definitions
Performance Notes
- First run may take longer due to AI model downloads (~1-2GB)
- Models are cached locally after first download
- The server includes rate limiting and error handling for API calls
- Fallback modes ensure functionality even if AI models fail to load
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。