Moondream MCP Server

Moondream MCP Server

Provides AI-powered image analysis capabilities including captioning, visual question answering, object detection, and coordinate pointing for both local files and remote URLs through the Moondream vision language model.

Category
访问服务器

README

Moondream MCP Server

A FastMCP server for Moondream, an AI vision language model. This server provides image analysis capabilities including captioning, visual question answering, object detection, and visual pointing through the Model Context Protocol (MCP).

Features

  • 🖼️ Image Captioning: Generate short, normal, or detailed captions for images
  • Visual Question Answering: Ask natural language questions about images
  • 🔍 Object Detection: Detect and locate specific objects with bounding boxes
  • 📍 Visual Pointing: Get precise coordinates of objects in images
  • 🔗 URL Support: Process images from both local files and remote URLs
  • Batch Processing: Analyze multiple images efficiently
  • 🚀 Device Optimization: Automatic detection and optimization for CPU, CUDA, and MPS (Apple Silicon)

Installation

Prerequisites

  • Python 3.10 or higher
  • PyTorch 2.0+ (with appropriate device support)

Using uvx (Recommended for Claude Desktop)

# Run without installation
uvx moondream-mcp

# Or specify a specific version
uvx moondream-mcp==1.0.2

Install from PyPI

pip install moondream-mcp

Install from Source

git clone https://github.com/ColeMurray/moondream-mcp.git
cd moondream-mcp
pip install -e .

Development Installation

git clone https://github.com/ColeMurray/moondream-mcp.git
cd moondream-mcp
pip install -e ".[dev]"

Quick Start

Running the Server

# Using uvx (no installation needed)
uvx moondream-mcp

# Using pip-installed command
moondream-mcp

# Or run directly with Python
python -m moondream_mcp.server

Claude Desktop Integration

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

Using uvx (Recommended)

{
  "mcpServers": {
    "moondream": {
      "command": "uvx",
      "args": ["moondream-mcp"],
      "env": {
        "MOONDREAM_DEVICE": "auto"
      }
    }
  }
}

Using pip-installed command

{
  "mcpServers": {
    "moondream": {
      "command": "moondream-mcp",
      "env": {
        "MOONDREAM_DEVICE": "auto"
      }
    }
  }
}

Configuration

The server can be configured using environment variables:

Model Settings

  • MOONDREAM_MODEL_NAME: Model name (default: vikhyatk/moondream2)
  • MOONDREAM_MODEL_REVISION: Model revision (default: 2025-01-09)
  • MOONDREAM_TRUST_REMOTE_CODE: Trust remote code (default: true)

Device Settings

  • MOONDREAM_DEVICE: Force specific device (cpu, cuda, mps, or auto)

Image Processing

  • MOONDREAM_MAX_IMAGE_SIZE: Maximum image dimensions (default: 2048x2048)
  • MOONDREAM_MAX_FILE_SIZE_MB: Maximum file size in MB (default: 50)

Performance

  • MOONDREAM_TIMEOUT_SECONDS: Processing timeout (default: 120)
  • MOONDREAM_MAX_CONCURRENT_REQUESTS: Max concurrent requests (default: 5)
  • MOONDREAM_ENABLE_STREAMING: Enable streaming for captions (default: true)
  • MOONDREAM_MAX_BATCH_SIZE: Maximum batch size for batch operations (default: 10)
  • MOONDREAM_BATCH_CONCURRENCY: Concurrent batch processing limit (default: 3)
  • MOONDREAM_ENABLE_BATCH_PROGRESS: Enable progress reporting for batch operations (default: true)

Network (for URLs)

  • MOONDREAM_REQUEST_TIMEOUT_SECONDS: HTTP request timeout (default: 30)
  • MOONDREAM_MAX_REDIRECTS: Maximum HTTP redirects (default: 5)
  • MOONDREAM_USER_AGENT: HTTP User-Agent header

Available Tools

1. caption_image

Generate captions for images.

Parameters:

  • image_path (string): Path to image file or URL
  • length (string): Caption length - "short", "normal", or "detailed"
  • stream (boolean): Whether to stream caption generation

Example:

{
  "image_path": "https://example.com/image.jpg",
  "length": "detailed",
  "stream": false
}

2. query_image

Ask questions about images.

Parameters:

  • image_path (string): Path to image file or URL
  • question (string): Question to ask about the image

Example:

{
  "image_path": "/path/to/image.jpg",
  "question": "How many people are in this image?"
}

3. detect_objects

Detect specific objects in images.

Parameters:

  • image_path (string): Path to image file or URL
  • object_name (string): Name of object to detect

Example:

{
  "image_path": "https://example.com/photo.jpg",
  "object_name": "person"
}

4. point_objects

Get coordinates of objects in images.

Parameters:

  • image_path (string): Path to image file or URL
  • object_name (string): Name of object to locate

Example:

{
  "image_path": "/path/to/image.jpg",
  "object_name": "car"
}

5. analyze_image

Multi-purpose image analysis tool.

Parameters:

  • image_path (string): Path to image file or URL
  • operation (string): Operation type ("caption", "query", "detect", "point")
  • parameters (string): JSON string with operation-specific parameters

Example:

{
  "image_path": "https://example.com/image.jpg",
  "operation": "query",
  "parameters": "{\"question\": \"What is the weather like?\"}"
}

6. batch_analyze_images

Process multiple images in batch.

Parameters:

  • image_paths (string): JSON array of image paths
  • operation (string): Operation to perform on all images
  • parameters (string): JSON string with operation-specific parameters

Example:

{
  "image_paths": "[\"image1.jpg\", \"image2.jpg\"]",
  "operation": "caption",
  "parameters": "{\"length\": \"short\"}"
}

Usage Examples

Basic Image Captioning

# Using the caption_image tool
result = await caption_image(
    image_path="https://example.com/sunset.jpg",
    length="detailed"
)

Visual Question Answering

# Ask about image content
result = await query_image(
    image_path="/path/to/family_photo.jpg",
    question="How many children are in this photo?"
)

Object Detection

# Detect faces in an image
result = await detect_objects(
    image_path="https://example.com/group_photo.jpg",
    object_name="face"
)

Batch Processing

# Process multiple images
result = await batch_analyze_images(
    image_paths='["img1.jpg", "img2.jpg", "img3.jpg"]',
    operation="caption",
    parameters='{"length": "normal"}'
)

Device Support

The server automatically detects and optimizes for available hardware:

Apple Silicon (MPS)

  • Optimal performance on M1/M2/M3 Macs
  • Automatic memory management
  • Native acceleration

NVIDIA CUDA

  • GPU acceleration for NVIDIA cards
  • Automatic CUDA memory management
  • Mixed precision support

CPU Fallback

  • Works on any system
  • Optimized for multi-core processing
  • Lower memory requirements

Error Handling

The server provides detailed error information:

{
  "success": false,
  "error_message": "Image file not found: /path/to/missing.jpg",
  "error_code": "IMAGE_PROCESSING_ERROR",
  "processing_time_ms": 15.2
}

Common error codes:

  • MODEL_LOAD_ERROR: Issues loading the Moondream model
  • IMAGE_PROCESSING_ERROR: Problems with image files or URLs
  • INFERENCE_ERROR: Model inference failures
  • INVALID_REQUEST: Invalid parameters or requests

Performance Tips

  1. Use appropriate image sizes: Resize large images before processing
  2. Batch processing: Use batch_analyze_images for multiple images
  3. Device optimization: Let the server auto-detect the best device
  4. Concurrent requests: Adjust MOONDREAM_MAX_CONCURRENT_REQUESTS based on your hardware
  5. Memory management: Monitor memory usage, especially with large images

Troubleshooting

Model Loading Issues

# Check PyTorch installation
python -c "import torch; print(torch.__version__)"

# Check device availability
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}, MPS: {torch.backends.mps.is_available()}')"

Memory Issues

  • Reduce MOONDREAM_MAX_IMAGE_SIZE
  • Lower MOONDREAM_MAX_CONCURRENT_REQUESTS
  • Use CPU instead of GPU for large images

Network Issues

  • Check firewall settings for URL access
  • Increase MOONDREAM_REQUEST_TIMEOUT_SECONDS
  • Verify SSL certificates for HTTPS URLs

Development

Running Tests

pytest tests/

Code Quality

# Format code
black src/ tests/

# Sort imports
isort src/ tests/

# Type checking
mypy src/

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Run quality checks
  6. Submit a pull request

License

This project is licensed under the MIT License. See LICENSE for details.

Acknowledgments

Support


Note: This server requires downloading the Moondream model on first use, which may take some time depending on your internet connection.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选