
MoziChem-MCP
Enables AI assistants to perform complex chemical engineering calculations including thermodynamic modeling, equation of state calculations, phase equilibrium computations, and vapor-liquid equilibrium analysis. Built on the MoziChem framework to bridge AI language models with specialized chemical engineering tools.
README
MoziChem-MCP
A collection of Model Context Protocol (MCP) servers for chemical engineering and chemistry applications, built on top of the powerful MoziChem framework. This repository provides specialized MCP tools that enable AI assistants to perform complex chemical calculations, thermodynamic modeling, and process engineering tasks.
🧪 Overview
MoziChem-MCP bridges the gap between AI language models and chemical engineering calculations by providing structured access to thermodynamic models, equation of state calculations, phase equilibrium computations, and other essential chemical engineering tools through the Model Context Protocol.
Important Notes: This repository is actively maintained and will be updated with new MCP servers and features in the future. Stay tuned for additions to support more chemical engineering domains.
🚀 Features
Current MCP Servers
-
🌡️ EOS Models MCP (
eos-models-mcp
)- Equation of State calculations using various models (Peng-Robinson, Soave-Redlich-Kwong, Redlich-Kwong, van der Waals)
- Fugacity calculations for pure components and mixtures
- Thermodynamic property predictions
- Phase behavior analysis
-
⚖️ Flash Calculations MCP (
flash-calculations-mcp
)- Vapor-liquid equilibrium calculations
- Multi-component phase equilibrium
- Temperature and pressure flash calculations
- Bubble point and dew point calculations
📦 Installation
Prerequisites
- Python 3.13 or higher
- uv package manager (recommended)
Install from Source
# Clone the repository
git clone https://github.com/sinagilassi/mozichem-mcp.git
cd mozichem-mcp
# Install using uv (recommended)
uv sync
# Or install using pip
pip install -e .
Install from PyPI (when available)
pip install mozichem-mcp
🔧 Usage
Running MCP Servers
Each MCP server can be run independently:
EOS Models MCP Server
# Using uvx with the published package
uvx --from mozichem-mcp mozichem-mcp-eos-models
# Or run directly with Python (if installed locally)
python -m mozichem_mcp.mcp.eos_models
Flash Calculations MCP Server
# Using uvx with the published package
uvx --from mozichem-mcp mozichem-mcp-flash-calculation
# Or run directly with Python (if installed locally)
python -m mozichem_mcp.mcp.flash_calculation
Integration with AI Assistants
These MCP servers are designed to work with AI assistants that support the Model Context Protocol, such as:
- Claude Desktop
- Other MCP-compatible AI tools
Example Configuration for Claude Desktop
Add to your Claude Desktop configuration:
{
"mcpServers": {
"mozichem-eos": {
"command": "uvx",
"args": ["--from", "mozichem-mcp", "mozichem-mcp-eos-models"]
},
"mozichem-flash": {
"command": "uvx",
"args": ["--from", "mozichem-mcp", "mozichem-mcp-flash-calculation"]
}
}
}
Example Calculations
Once integrated with an AI assistant, you can perform calculations like:
"Calculate the fugacity of methane at 300K and 10 bar using the Peng-Robinson equation of state"
"Perform a flash calculation for a mixture of 40% methane and 60% ethane at 250K and 20 bar"
📚 Documentation
Chemical Engineering Applications
- Process Design: Use for preliminary process calculations and design
- Research: Integrate with computational workflows for chemical engineering research
- Education: Enhance learning with interactive thermodynamic calculations
- Industry: Support engineering decisions with reliable thermodynamic data
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request to improve the project.
📝 License
This project is licensed under the MIT License. You are free to use, modify, and distribute this software in your own applications or projects. However, if you choose to use this app in another app or software, please ensure that my name, Sina Gilassi, remains credited as the original author. This includes retaining any references to the original repository or documentation where applicable. By doing so, you help acknowledge the effort and time invested in creating this project.
❓ FAQ
For any questions, contact me on LinkedIn.
👨💻 Authors
⭐ Star this repository if you find it useful for your chemical engineering projects!
🐛 Report issues or 💡 suggest new features in the Issues section.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。