mpc-csharp-semantickernel
Okay, here's an example demonstrating how to use Microsoft Semantic Kernel with OpenAI and a hypothetical "MCP Server" (assuming MCP stands for something like "My Custom Processing Server" or "Message Control Protocol Server"). Since "MCP Server" is vague, I'll make some assumptions about its functionality and how it might interact with Semantic Kernel. You'll need to adapt this to your specific MCP Server's capabilities. **Conceptual Overview** The core idea is to use Semantic Kernel to orchestrate interactions between OpenAI (for language understanding and generation) and your MCP Server (for specialized processing, data retrieval, or control actions). **Assumptions about the MCP Server** * **API Endpoint:** It exposes an API endpoint (e.g., REST API) for receiving requests and sending responses. * **Functionality:** Let's assume it can perform a specific task, like: * **Data Lookup:** Retrieve information from a database based on a query. * **System Control:** Execute a command on a system. * **Message Routing:** Route a message to a specific destination. * **Input/Output:** It expects structured input (e.g., JSON) and returns structured output (e.g., JSON). **Example Scenario: Smart Home Control** Let's imagine an MCP Server that controls smart home devices. We want to use Semantic Kernel and OpenAI to allow users to control their home with natural language. **Code Example (C#)** ```csharp using Microsoft.SemanticKernel; using Microsoft.SemanticKernel.Connectors.OpenAI; using System.Net.Http; using System.Text; using System.Text.Json; using System.Threading.Tasks; public class SmartHomePlugin { private readonly HttpClient _httpClient; private readonly string _mcpServerEndpoint; public SmartHomePlugin(string mcpServerEndpoint) { _httpClient = new HttpClient(); _mcpServerEndpoint = mcpServerEndpoint; } [KernelFunction, Description("Controls a smart home device.")] public async Task<string> ControlDevice( [Description("The device to control (e.g., lights, thermostat).")] string device, [Description("The action to perform (e.g., turn on, turn off, set temperature).")] string action, [Description("The value to set (e.g., 22 for temperature).")] string value = "" ) { // 1. Prepare the request to the MCP Server var requestData = new { device = device, action = action, value = value }; string jsonRequest = JsonSerializer.Serialize(requestData); var content = new StringContent(jsonRequest, Encoding.UTF8, "application/json"); // 2. Send the request to the MCP Server HttpResponseMessage response = await _httpClient.PostAsync(_mcpServerEndpoint, content); // 3. Handle the response from the MCP Server if (response.IsSuccessStatusCode) { string jsonResponse = await response.Content.ReadAsStringAsync(); // Deserialize the JSON response (assuming MCP Server returns JSON) try { var responseObject = JsonSerializer.Deserialize<Dictionary<string, string>>(jsonResponse); return responseObject?["status"] ?? "Unknown status"; // Assuming MCP returns a "status" field } catch (JsonException ex) { Console.WriteLine($"Error deserializing MCP Server response: {ex.Message}"); return "Error processing MCP Server response."; } } else { Console.WriteLine($"MCP Server request failed: {response.StatusCode}"); return $"MCP Server request failed with status code: {response.StatusCode}"; } } } public class Example { public static async Task Main() { // 1. Configure Semantic Kernel string apiKey = "YOUR_OPENAI_API_KEY"; string orgId = "YOUR_OPENAI_ORG_ID"; // Optional Kernel kernel = Kernel.CreateBuilder() .AddOpenAIChatCompletion("gpt-3.5-turbo", apiKey, orgId) // Or "gpt-4" .Build(); // 2. Define the MCP Server endpoint string mcpServerEndpoint = "http://your-mcp-server.com/api/control"; // Replace with your actual endpoint // 3. Import the SmartHomePlugin var smartHomePlugin = new SmartHomePlugin(mcpServerEndpoint); kernel.ImportPluginFromObject(smartHomePlugin, "SmartHome"); // 4. Create a Semantic Function (Prompt) string prompt = @" Control the smart home device. Device: {{$device}} Action: {{$action}} Value: {{$value}} {{SmartHome.ControlDevice $device $action $value}} "; var smartHomeFunction = kernel.CreateFunction(prompt); // 5. Run the Semantic Function with user input var arguments = new KernelArguments { ["device"] = "lights", ["action"] = "turn on", ["value"] = "" }; var result = await smartHomeFunction.InvokeAsync(kernel, arguments); Console.WriteLine($"Result: {result.GetValue<string>()}"); // Example 2: More natural language input using OpenAI to extract parameters string naturalLanguagePrompt = "Turn on the living room lights."; // Define a prompt to extract device, action, and value from the natural language input string extractionPrompt = @" Extract the device, action, and value from the following text: Text: {{$text}} Device: Action: Value: "; var extractionFunction = kernel.CreateFunction(extractionPrompt); var extractionResult = await extractionFunction.InvokeAsync(kernel, new KernelArguments { ["text"] = naturalLanguagePrompt }); string extractedText = extractionResult.GetValue<string>()!; // Parse the extracted text (this is a simplified example; you might need more robust parsing) string extractedDevice = extractedText.Split("Device:")[1].Split("Action:")[0].Trim(); string extractedAction = extractedText.Split("Action:")[1].Split("Value:")[0].Trim(); string extractedValue = extractedText.Split("Value:")[1].Trim(); Console.WriteLine($"Extracted Device: {extractedDevice}"); Console.WriteLine($"Extracted Action: {extractedAction}"); Console.WriteLine($"Extracted Value: {extractedValue}"); // Now use the extracted parameters with the SmartHome.ControlDevice function var controlArguments = new KernelArguments { ["device"] = extractedDevice, ["action"] = extractedAction, ["value"] = extractedValue }; var controlResult = await smartHomeFunction.InvokeAsync(kernel, controlArguments); Console.WriteLine($"Control Result: {controlResult.GetValue<string>()}"); } } ``` **Explanation:** 1. **`SmartHomePlugin`:** * This class represents a Semantic Kernel plugin that interacts with the MCP Server. * It takes the MCP Server endpoint as a constructor parameter. * The `ControlDevice` function is decorated with `[KernelFunction]` to make it available to Semantic Kernel. * It constructs a JSON request based on the input parameters (`device`, `action`, `value`). * It sends a POST request to the MCP Server. * It handles the response from the MCP Server, deserializing the JSON and returning a status message. Error handling is included. 2. **`Example.Main`:** * **Configure Semantic Kernel:** Sets up the Semantic Kernel with your OpenAI API key and organization ID. * **Define MCP Server Endpoint:** Replace `"http://your-mcp-server.com/api/control"` with the actual URL of your MCP Server's API endpoint. * **Import Plugin:** Creates an instance of the `SmartHomePlugin` and imports it into the Semantic Kernel. This makes the `ControlDevice` function available for use in prompts. * **Create Semantic Function (Prompt):** Defines a prompt that uses the `SmartHome.ControlDevice` function. The prompt takes `device`, `action`, and `value` as input parameters. * **Run Semantic Function:** Creates a `KernelArguments` object with the desired device, action, and value, and then invokes the semantic function. The result from the MCP Server is printed to the console. * **Natural Language Example:** Demonstrates how to use OpenAI to extract the device, action, and value from a natural language prompt. This allows users to control their smart home with more natural commands. A separate prompt is used for extraction. The extracted parameters are then used to call the `SmartHome.ControlDevice` function. **Key Points and Considerations:** * **MCP Server API:** The most important part is understanding the API of your MCP Server. You need to know the endpoint, the expected request format (JSON schema), and the format of the response. * **Error Handling:** The example includes basic error handling for network requests and JSON deserialization. You should add more robust error handling for production code. * **Security:** If your MCP Server requires authentication, you'll need to add authentication headers to the `HttpClient` requests. Never hardcode sensitive information like API keys directly in your code. Use environment variables or a secure configuration mechanism. * **Prompt Engineering:** The prompts are crucial for getting the desired behavior. Experiment with different prompts to improve the accuracy and reliability of the system. Consider using techniques like few-shot learning to provide examples to the language model. * **JSON Serialization/Deserialization:** The example uses `System.Text.Json`. You can use other JSON libraries like Newtonsoft.Json if you prefer. * **Dependency Injection:** For larger applications, consider using dependency injection to manage the `HttpClient` and other dependencies. * **Asynchronous Operations:** The example uses `async` and `await` for asynchronous operations. This is important for avoiding blocking the main thread and improving performance. * **Parameter Extraction:** The natural language example uses a simple string splitting approach to extract parameters. For more complex scenarios, you might need to use more sophisticated techniques like regular expressions or a dedicated natural language processing library. Semantic Kernel also offers more advanced techniques for parameter extraction. * **Semantic Kernel Plugins:** Consider breaking down your MCP Server functionality into multiple Semantic Kernel plugins for better organization and reusability. * **Testing:** Write unit tests to verify the functionality of your Semantic Kernel plugins and the interactions with the MCP Server. **How to Adapt This Example:** 1. **Replace Placeholders:** Replace `"YOUR_OPENAI_API_KEY"`, `"YOUR_OPENAI_ORG_ID"`, and `"http://your-mcp-server.com/api/control"` with your actual values. 2. **Implement MCP Server Interaction:** Modify the `SmartHomePlugin` to match the API of your MCP Server. Adjust the request format, response handling, and error handling accordingly. 3. **Customize Prompts:** Adjust the prompts to match the specific tasks you want to perform. 4. **Add Error Handling:** Implement more robust error handling to handle potential issues with the MCP Server or the OpenAI API. 5. **Add Security:** Implement appropriate security measures to protect your API keys and other sensitive information. **Chinese Translation of Key Concepts:** * **Microsoft Semantic Kernel:** 微软语义内核 (Wēiruǎn yǔyì kènèi) * **OpenAI:** 开放人工智能 (Kāifàng réngōng zhìnéng) * **MCP Server:** (You'll need to translate this based on what MCP stands for in your context. For example, if it's "My Custom Processing Server," you could translate it as: 我的自定义处理服务器 (Wǒ de zì dìngyì chǔlǐ fúwùqì)) * **Plugin:** 插件 (Chājiàn) * **Kernel Function:** 内核函数 (Nèihé hánshù) * **Prompt:** 提示 (Tíshì) * **Semantic Function:** 语义函数 (Yǔyì hánshù) * **API Endpoint:** 应用程序接口端点 (Yìngyòng chéngxù jiēkǒu duāndiǎn) * **Natural Language:** 自然语言 (Zìrán yǔyán) This comprehensive example should give you a solid foundation for using Microsoft Semantic Kernel with OpenAI and your MCP Server. Remember to adapt the code to your specific needs and to thoroughly test your implementation. Good luck!
mrazvanalex
README
此仓库将不再维护。这只是一个快速示例。
mpc-csharp-semantickernel
这是 Microsoft Semantic Kernel 与 OpenAI 以及 Model Context Protocol 的官方 C# SDK 的一个使用示例,该 SDK 可以在 https://github.com/modelcontextprotocol/csharp-sdk 找到。
前提条件
一个 SMTP 邮件服务器(用于 EmailTools) 一个 OpenAI ApiKey
如何运行示例
- 使用您的 OpenAI 开发者仪表板获取 ApiKey。
- 为每个单独的项目填写 appsettings。
- 您可以发送电子邮件的电子邮件地址被硬编码在 Tools/EmailTool.cs 中的一个字典中。 使用您的电子邮件列表更新该字典。 随意将其设置为一个设置。
- 运行项目。 默认的 launchSettings 设置为 http://localhost:5109
Appsettings
WebAppMCPPoc 项目
{
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
}
},
"OpenAI": {
"ApiKey": "<yourApiKey>",
"ChatModelId" : "gpt-4o-mini"
}
}
MCPServer 项目
{
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
}
},
"AllowedHosts": "*",
"EmailSettings": {
"SMTPServer": {
"MailPort": "465",
"MailServer": "<yourserver.com>",
"Sender": "<sender@youremail.com>",
"SenderName": "<AIEmailSender>",
"Password": "<EmailPassword>",
"Username": "<EmailUsername>"
}
}
}
发送请求:
您可以使用像 Postman 这样的工具来发送请求。
示例请求:
POST
https://localhost:7113/chat
Body: { "text": "send and email toaFriend and tell him that you are an ai in 250 words. Tell him you're using C# to do this.."}
将 {someone} 替换为您已添加到 EmailTool 电子邮件字典中的名称。
private static readonly Dictionary<string, string> emails = new Dictionary<string, string>
{
{ "example", "mail@example.com" },
{ "aFriend", "friendEmail@gmail.com" }
};
许可证
本项目根据 MIT 许可证获得许可。
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
@kazuph/mcp-taskmanager
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。