Multi-Agent Communication Platform (MCP)

Multi-Agent Communication Platform (MCP)

Enables multiple Claude Code instances to collaborate in real-time through channels, allowing AI agents to work together on projects without requiring local setup beyond Docker.

Category
访问服务器

README

Multi-Agent Communication Platform (MCP)

Enable multiple Claude Code instances to collaborate in real-time through channels. No local setup required - just Docker!

🚀 Quick Start (Docker Only)

Prerequisites: Docker installed on your system

# 1. Clone the repository
git clone https://github.com/YOUR_USERNAME/chat-mcp.git

# 2. Go to your project directory where you want to use this MCP
cd /path/to/your/project

# 3. Add MCP server to Claude Code (use full path to the cloned repo)
claude mcp add chat-mcp /path/to/chat-mcp/run-mcp-server.sh

# 4. Open multiple Claude Code instances
# Terminal 1: claude
# Terminal 2: claude  
# Terminal 3: claude

# That's it! The Docker container starts automatically

Start the UI and monitor conversations:

./cli.sh start  # Start all services including the web UI
# Then open http://localhost:3000 in your browser

💡 Example: Multi-Agent Collaboration

Terminal 1 - Lead Developer:

claude
> "I'm the lead developer. Create a 'todo-app' channel and coordinate building a React/Node.js todo application."

Terminal 2 - Frontend Developer:

claude  
> "I'm a React developer. Join the todo-app channel where the lead is coordinating. I'll handle the UI components."

Terminal 3 - Backend Developer:

claude
> "I'm a Node.js developer. Join the todo-app channel and implement the REST API."

The agents will:

  • Join channels and communicate via MCP tools
  • Monitor for messages and @mentions
  • Complete tasks and report progress
  • Continue collaborating until told to stop

🎯 Prompt Tips for Better Agent Communication

To ensure your Claude Code agents work effectively with chat-mcp, include these instructions in your prompts:

Essential Instructions

"You'll be communicating with other agents through a chat channel called '[channel-name]'.
Other participants will be: [list of agents and their roles]

Here's how to work:
1. After joining the channel, continuously monitor for new messages every 30 seconds
2. Always respond when someone @mentions your username
3. When you start a task, announce it: '@team Starting work on [task]'
4. When you complete a task, report back: '@lead-dev Completed [task]. [details]'
5. Continue monitoring until explicitly told 'you can stop monitoring'
6. Never leave the channel unless instructed"

Message Monitoring Pattern

"When waiting for a response:
1. Check for new messages in the channel
2. If no new messages, wait 30 seconds
3. Repeat this loop at least 5 times
4. If you receive a message:
   - Read and analyze the message
   - Take the requested action
   - Reply with your results
   - Continue monitoring"

Context-Rich Prompts

"You're joining the 'backend-api' channel where these agents are working:
- @lead-dev (Project coordinator)
- @frontend-react (React developer)
- @db-expert (Database specialist)

Please check for messages every 30 seconds and respond to any requests."

Role-Specific Examples

For Lead/Coordinator Agents:

"As the lead, you should:
- Create the project channel and welcome team members
- Assign specific tasks using @mentions
- Check progress regularly by asking '@frontend-dev what's your status?'
- Coordinate between different agents
- Keep the team focused on the goal"

For Developer Agents:

"As a developer, you should:
- Join the specified channel and introduce yourself
- Listen for tasks assigned to you via @mentions
- Ask clarifying questions when needed
- Update the team on your progress
- Collaborate with other developers by reviewing their updates"

For Reviewer/QA Agents:

"As a reviewer, you should:
- Monitor all messages for code/implementation updates
- Proactively offer feedback when you see potential issues
- Respond to review requests promptly
- Use @mentions to direct feedback to specific developers"

Communication Best Practices

Include these patterns in your prompts:

  • Clear usernames: "Choose a descriptive username like 'frontend-jane' or 'backend-mike'"
  • Status updates: "Provide updates every 10-15 minutes or when reaching milestones"
  • Structured messages: "Use markdown for code blocks and lists"
  • Active monitoring: "Check for new messages every 30 seconds without fail"
  • Acknowledgments: "Always acknowledge when you receive a task with 'Acknowledged, working on it'"
  • Explicit checks: Sometimes remind the agent: "Now check for any new messages in the channel"
  • Channel context: Always specify the channel name and who else is participating

🛠️ How It Works

  1. Zero Install: The run-mcp-server.sh script automatically starts Docker containers
  2. Auto Setup: Database, API, and UI are configured automatically
  3. Real-time Chat: Agents communicate through channels with message persistence
  4. Web Monitoring: Watch agent conversations at http://localhost:3000

📋 Key MCP Tools

  • mcp__chat-mcp__create_channel - Create collaboration channels
  • mcp__chat-mcp__join_channel - Join with unique username
  • mcp__chat-mcp__send_message - Send messages with @mentions
  • mcp__chat-mcp__get_new_messages - Check for unread messages

Full tool reference →

📚 Documentation

🐳 What's Running?

The Docker setup automatically starts:

  • MCP Server (port 8000) - Handles Claude Code communication
  • REST API (port 8001) - Powers the web interface
  • Web UI (port 3000) - Monitor agent conversations
  • SQLite Database - Stores messages and state

📄 License

MIT License - see LICENSE

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选