Multi-Agent RAG MCP Server

Multi-Agent RAG MCP Server

A legal-tech focused system that coordinates specialized agents for document classification, deadline extraction from Spanish legal texts, and strategic business intelligence. It integrates with Claude via MCP to provide semantic document search and automated deadline tracking using a Supabase vector database.

Category
访问服务器

README

Multi-Agent RAG MCP Server

A comprehensive multi-agent Retrieval-Augmented Generation (RAG) system built on the Model Context Protocol (MCP), featuring specialized AI microagents for legal document processing, deadline extraction, and strategic analytics.

🎯 Overview

This project implements an interconnected agentic ecosystem using MCP servers as the foundation for coordinating specialized AI agents. The system is designed for legal tech applications, particularly document intelligence and deadline management.

✨ Features

  • Multi-Agent Architecture: Three specialized agents working in coordination
  • Vector Storage: Supabase with pgvector for semantic search
  • MCP Integration: Seamless integration with Claude Desktop
  • Legal Document Processing: Specialized for Spanish legal notifications
  • Strategic Analytics: Business intelligence and context analysis
  • Zero-Input Strategy: 75% automation, 25% strategic oversight

🤖 Agents

1. Deadline Agent

Extracts and manages deadlines from Spanish legal documents with high accuracy.

Capabilities:

  • Spanish legal text processing
  • Deadline extraction and categorization
  • Automated deadline tracking
  • Legal notification parsing

2. Document Classification Agent

Automatically categorizes and classifies legal documents.

Capabilities:

  • Multi-class document classification
  • Metadata extraction
  • Automated tagging
  • Document type recognition

3. SmartContext Analytics Agent

Provides strategic business intelligence and contextual analysis.

Capabilities:

  • Strategic analytics
  • Business context extraction
  • Cross-document insights
  • Trend analysis

🏗️ Architecture

rag-mcp-server/
├── src/
│   ├── server.py              # Main MCP server
│   ├── agents/
│   │   ├── deadline_agent.py
│   │   ├── document_agent.py
│   │   └── smartcontext_agent.py
│   └── data_sources/
├── database/
│   └── schema.sql             # Database schema
├── docs/                      # Documentation
├── config/                    # Configuration files
├── data/                      # Data storage
└── tests/                     # Test files

🚀 Quick Start

Prerequisites

  • Python 3.10+
  • Supabase account
  • Claude Desktop (for MCP integration)
  • PostgreSQL with pgvector extension

Installation

  1. Clone the repository
git clone https://github.com/yourusername/rag-mcp-server.git
cd rag-mcp-server
  1. Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies
pip install -r requirements.txt
  1. Configure environment
cp .env.example .env
# Edit .env with your credentials
  1. Initialize database
# Run the database schema (see docs for details)
psql -h your-supabase-host -U postgres -d your-database -f database/schema.sql
  1. Configure Claude Desktop Edit your Claude Desktop config file (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
  "mcpServers": {
    "rag-server": {
      "command": "python",
      "args": ["/Users/yourusername/rag-mcp-server/src/server.py"],
      "env": {
        "SUPABASE_URL": "your_supabase_url",
        "SUPABASE_KEY": "your_supabase_key"
      }
    }
  }
}
  1. Restart Claude Desktop

🛠️ Usage

The system can be used in two ways:

1. MCP Server (Claude Desktop Integration)

Once configured, the agents are available through Claude Desktop with the following tools:

Deadline Agent Tools

  • extract_deadlines - Extract deadlines from legal documents
  • list_deadlines - List all tracked deadlines
  • search_deadlines - Search deadlines by criteria

Document Agent Tools

  • classify_document - Classify document type
  • index_document - Add document to vector store
  • search_documents - Semantic document search

SmartContext Agent Tools

  • analyze_context - Strategic context analysis
  • extract_insights - Business intelligence extraction
  • trend_analysis - Cross-document trend analysis

2. REST API Server (Frontend Integration)

The system also provides a FastAPI REST API for frontend applications:

# Run REST API server (for frontend)
python src/api_server.py

The API server runs on http://localhost:8000 with interactive documentation at http://localhost:8000/docs.

Key Features:

  • Client Management - Create and manage client records
  • Document Upload - Upload documents with automatic processing
  • Data Retrieval - Query documents, deadlines, and analyses per client
  • CORS Enabled - Ready for frontend integration

API Endpoints:

Client Management:

  • POST /api/clients - Create new client
  • GET /api/clients - List all clients
  • GET /api/clients/{client_id} - Get client details
  • PUT /api/clients/{client_id} - Update client
  • DELETE /api/clients/{client_id} - Delete client (soft delete)

Document Operations:

  • POST /api/clients/{client_id}/documents - Upload and process document
  • GET /api/clients/{client_id}/documents - List client's documents
  • GET /api/clients/{client_id}/documents/stats - Document statistics

Deadline Management:

  • GET /api/clients/{client_id}/deadlines - Get client's deadlines
  • GET /api/clients/{client_id}/deadlines/stats - Deadline statistics

Strategic Analysis:

  • GET /api/clients/{client_id}/analysis - Get strategic analyses

Running Both Servers:

# Run MCP server for Claude Desktop (existing functionality)
python src/server.py

# Run REST API server for frontend (new functionality)
python src/api_server.py

Both servers can run independently and use the same database.

📊 Database Schema

The system uses the following main tables:

  • clients - Client information and management
  • documents - Document metadata and classification
  • deadline_extractions - Deadline extraction operations
  • deadlines - Extracted deadline tracking
  • analyses - Strategic insights and analytics

Client Isolation: All documents, deadlines, and analyses are associated with specific clients via client_id, enabling proper data isolation and multi-tenant support.

See database/schema.sql for complete schema details.

📚 Documentation

Comprehensive documentation is available in the docs/ folder:

  • Quick Start Guide - 30-minute setup from scratch
  • Architecture Guide - Complete system design and patterns
  • Troubleshooting Guide - Common issues and solutions
  • API Reference - Tool definitions and usage

🔒 Security

This system implements three-layered security:

  1. Authentication - User identity verification
  2. Authorization - Access control and permissions
  3. Encryption - Zero-knowledge encryption for sensitive data

Never commit your .env file - it contains sensitive credentials.

🧪 Testing

Run the test suite:

pytest tests/

Test individual agents:

python test_deadline_extraction.py

🤝 Contributing

This is a personal project, but suggestions and feedback are welcome! Please open an issue to discuss proposed changes.

📝 License

[Add your license here]

🙏 Acknowledgments

Built with:

📞 Contact

[Add your contact information]


Status: Production-Ready
Version: 1.0
Last Updated: November 2024

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选