Multi-Agent RAG MCP Server
A legal-tech focused system that coordinates specialized agents for document classification, deadline extraction from Spanish legal texts, and strategic business intelligence. It integrates with Claude via MCP to provide semantic document search and automated deadline tracking using a Supabase vector database.
README
Multi-Agent RAG MCP Server
A comprehensive multi-agent Retrieval-Augmented Generation (RAG) system built on the Model Context Protocol (MCP), featuring specialized AI microagents for legal document processing, deadline extraction, and strategic analytics.
🎯 Overview
This project implements an interconnected agentic ecosystem using MCP servers as the foundation for coordinating specialized AI agents. The system is designed for legal tech applications, particularly document intelligence and deadline management.
✨ Features
- Multi-Agent Architecture: Three specialized agents working in coordination
- Vector Storage: Supabase with pgvector for semantic search
- MCP Integration: Seamless integration with Claude Desktop
- Legal Document Processing: Specialized for Spanish legal notifications
- Strategic Analytics: Business intelligence and context analysis
- Zero-Input Strategy: 75% automation, 25% strategic oversight
🤖 Agents
1. Deadline Agent
Extracts and manages deadlines from Spanish legal documents with high accuracy.
Capabilities:
- Spanish legal text processing
- Deadline extraction and categorization
- Automated deadline tracking
- Legal notification parsing
2. Document Classification Agent
Automatically categorizes and classifies legal documents.
Capabilities:
- Multi-class document classification
- Metadata extraction
- Automated tagging
- Document type recognition
3. SmartContext Analytics Agent
Provides strategic business intelligence and contextual analysis.
Capabilities:
- Strategic analytics
- Business context extraction
- Cross-document insights
- Trend analysis
🏗️ Architecture
rag-mcp-server/
├── src/
│ ├── server.py # Main MCP server
│ ├── agents/
│ │ ├── deadline_agent.py
│ │ ├── document_agent.py
│ │ └── smartcontext_agent.py
│ └── data_sources/
├── database/
│ └── schema.sql # Database schema
├── docs/ # Documentation
├── config/ # Configuration files
├── data/ # Data storage
└── tests/ # Test files
🚀 Quick Start
Prerequisites
- Python 3.10+
- Supabase account
- Claude Desktop (for MCP integration)
- PostgreSQL with pgvector extension
Installation
- Clone the repository
git clone https://github.com/yourusername/rag-mcp-server.git
cd rag-mcp-server
- Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies
pip install -r requirements.txt
- Configure environment
cp .env.example .env
# Edit .env with your credentials
- Initialize database
# Run the database schema (see docs for details)
psql -h your-supabase-host -U postgres -d your-database -f database/schema.sql
- Configure Claude Desktop
Edit your Claude Desktop config file (
~/Library/Application Support/Claude/claude_desktop_config.jsonon macOS):
{
"mcpServers": {
"rag-server": {
"command": "python",
"args": ["/Users/yourusername/rag-mcp-server/src/server.py"],
"env": {
"SUPABASE_URL": "your_supabase_url",
"SUPABASE_KEY": "your_supabase_key"
}
}
}
}
- Restart Claude Desktop
🛠️ Usage
The system can be used in two ways:
1. MCP Server (Claude Desktop Integration)
Once configured, the agents are available through Claude Desktop with the following tools:
Deadline Agent Tools
extract_deadlines- Extract deadlines from legal documentslist_deadlines- List all tracked deadlinessearch_deadlines- Search deadlines by criteria
Document Agent Tools
classify_document- Classify document typeindex_document- Add document to vector storesearch_documents- Semantic document search
SmartContext Agent Tools
analyze_context- Strategic context analysisextract_insights- Business intelligence extractiontrend_analysis- Cross-document trend analysis
2. REST API Server (Frontend Integration)
The system also provides a FastAPI REST API for frontend applications:
# Run REST API server (for frontend)
python src/api_server.py
The API server runs on http://localhost:8000 with interactive documentation at http://localhost:8000/docs.
Key Features:
- Client Management - Create and manage client records
- Document Upload - Upload documents with automatic processing
- Data Retrieval - Query documents, deadlines, and analyses per client
- CORS Enabled - Ready for frontend integration
API Endpoints:
Client Management:
POST /api/clients- Create new clientGET /api/clients- List all clientsGET /api/clients/{client_id}- Get client detailsPUT /api/clients/{client_id}- Update clientDELETE /api/clients/{client_id}- Delete client (soft delete)
Document Operations:
POST /api/clients/{client_id}/documents- Upload and process documentGET /api/clients/{client_id}/documents- List client's documentsGET /api/clients/{client_id}/documents/stats- Document statistics
Deadline Management:
GET /api/clients/{client_id}/deadlines- Get client's deadlinesGET /api/clients/{client_id}/deadlines/stats- Deadline statistics
Strategic Analysis:
GET /api/clients/{client_id}/analysis- Get strategic analyses
Running Both Servers:
# Run MCP server for Claude Desktop (existing functionality)
python src/server.py
# Run REST API server for frontend (new functionality)
python src/api_server.py
Both servers can run independently and use the same database.
📊 Database Schema
The system uses the following main tables:
clients- Client information and managementdocuments- Document metadata and classificationdeadline_extractions- Deadline extraction operationsdeadlines- Extracted deadline trackinganalyses- Strategic insights and analytics
Client Isolation:
All documents, deadlines, and analyses are associated with specific clients via client_id, enabling proper data isolation and multi-tenant support.
See database/schema.sql for complete schema details.
📚 Documentation
Comprehensive documentation is available in the docs/ folder:
- Quick Start Guide - 30-minute setup from scratch
- Architecture Guide - Complete system design and patterns
- Troubleshooting Guide - Common issues and solutions
- API Reference - Tool definitions and usage
🔒 Security
This system implements three-layered security:
- Authentication - User identity verification
- Authorization - Access control and permissions
- Encryption - Zero-knowledge encryption for sensitive data
Never commit your .env file - it contains sensitive credentials.
🧪 Testing
Run the test suite:
pytest tests/
Test individual agents:
python test_deadline_extraction.py
🤝 Contributing
This is a personal project, but suggestions and feedback are welcome! Please open an issue to discuss proposed changes.
📝 License
[Add your license here]
🙏 Acknowledgments
Built with:
- Anthropic Claude - AI capabilities
- Model Context Protocol - Agent coordination
- Supabase - Database and vector storage
- pgvector - Vector similarity search
📞 Contact
[Add your contact information]
Status: Production-Ready
Version: 1.0
Last Updated: November 2024
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。