Multi-Memory MCP Server

Multi-Memory MCP Server

A knowledge graph memory server using SQLite to provide persistent, isolated contexts for organizing information into searchable categories like work and personal projects. It features unique ID-based operations and a token-efficient serialization format designed to optimize interactions with LLMs.

Category
访问服务器

README

Multi-Memory MCP Server

A multi-category knowledge graph memory server using SQLite for persistent storage. Organize memories into isolated contexts for different purposes (work, personal, projects, etc.).

Based on @modelcontextprotocol/server-memory with enhancements:

  • SQLite database storage with proper indexing and transactions
  • Multi-category support with isolated memory contexts
  • LRU connection cache (prevents memory leaks)
  • ID-based operations - all objects have unique IDs for precise operations
  • Dual identification - use ID or name/type composite key
  • Custom properties - JSON properties on entities, observations, and relations (searchable)
  • Override mode - update existing records instead of skipping duplicates
  • SQL injection protection
  • Full test coverage (141 tests)

Quick Start

Run Directly with npx (No Installation Required)

The fastest way to use multi-memory-mcp is to run it directly from GitHub using npx:

npx github:DanNsk/multi-memory-mcp

This will download, build, and run the server automatically. Perfect for trying it out or using in Claude Desktop config:

{
  "mcpServers": {
    "multi-memory": {
      "command": "npx",
      "args": ["github:DanNsk/multi-memory-mcp"],
      "env": {
        "MEMORY_BASE_DIR": "/path/to/.memory",
        "DEFAULT_CATEGORY": "default"
      }
    }
  }
}

Installation (Local Development)

git clone https://github.com/DanNsk/multi-memory-mcp
cd multi-memory-mcp
npm install
npm run build

Configuration

Add to Claude Desktop config:

Config file locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Using npx (recommended):

{
  "mcpServers": {
    "multi-memory": {
      "command": "npx",
      "args": ["github:DanNsk/multi-memory-mcp"],
      "env": {
        "MEMORY_BASE_DIR": "/Users/yourname/.memory",
        "DEFAULT_CATEGORY": "default"
      }
    }
  }
}

Using local installation (macOS/Linux):

{
  "mcpServers": {
    "multi-memory": {
      "command": "node",
      "args": ["/absolute/path/to/multi-memory-mcp/dist/index.js"],
      "env": {
        "MEMORY_BASE_DIR": "/Users/yourname/.memory",
        "DEFAULT_CATEGORY": "default"
      }
    }
  }
}

Using local installation (Windows):

{
  "mcpServers": {
    "multi-memory": {
      "command": "node",
      "args": ["C:\\path\\to\\multi-memory-mcp\\dist\\index.js"],
      "env": {
        "MEMORY_BASE_DIR": "C:\\Users\\yourname\\.memory",
        "DEFAULT_CATEGORY": "default"
      }
    }
  }
}

Environment Variables

  • MEMORY_BASE_DIR: Base directory for all memory categories (default: .aim in current working directory)
  • DEFAULT_CATEGORY: Default category when none specified (default: "default")
  • SERIALIZATION_FORMAT: Output format for tool responses (default: "json")
    • json - Standard JSON with 2-space indentation
    • toon - TOON (Token-Oriented Object Notation) - compact format optimized for LLMs with 30-60% fewer tokens

TOON Format

When SERIALIZATION_FORMAT=toon, responses use TOON format which is more token-efficient for LLM contexts.

Structure:

  • Objects: key: value with 2-space indentation for nesting
  • Arrays: name[count]{field1,field2}: followed by comma-separated rows
  • Primitives: unquoted unless containing special characters

Escaping rules (only these escape sequences are valid):

  • \\ - backslash
  • \" - double quote
  • \n - newline
  • \r - carriage return
  • \t - tab

Quoting required when: empty string, leading/trailing spaces, matches true/false/null, numeric, or contains : " \ [ ] { } ,

Example JSON vs TOON:

JSON (standard):

{
  "entities": [
    {"id": "1", "name": "AuthService", "entityType": "module", "observations": []}
  ]
}

TOON (compact):

entities[1]{id,name,entityType,observations}:
  1,AuthService,module,[]

See TOON specification for full format details.

Database Schema

Each category stores data in a separate SQLite database with the following schema:

Tables

entities

Primary storage for graph nodes.

Column Type Description
id INTEGER PRIMARY KEY AUTOINCREMENT Unique entity identifier
name TEXT NOT NULL Entity name
entity_type TEXT NOT NULL Entity classification type
properties TEXT JSON properties (searchable)
created_at INTEGER Unix timestamp of creation
updated_at INTEGER Unix timestamp of last update

Unique Constraint: (name, entity_type) - entities are identified by name+type combination

observations

Facts and notes associated with entities.

Column Type Description
id INTEGER PRIMARY KEY AUTOINCREMENT Unique observation identifier
entity_id INTEGER NOT NULL Foreign key to entities(id)
observation_type TEXT NOT NULL DEFAULT '' Type/category of observation
content TEXT NOT NULL Observation text
timestamp TEXT ISO 8601 timestamp
source TEXT NOT NULL DEFAULT '' Origin of observation
properties TEXT JSON properties (searchable)
created_at INTEGER Unix timestamp of creation

Foreign Key: entity_identities(id) ON DELETE CASCADE

Unique Constraint: (entity_id, observation_type, source) - one observation per type+source per entity

relations

Directed connections between entities.

Column Type Description
id INTEGER PRIMARY KEY AUTOINCREMENT Unique relation identifier
from_entity_id INTEGER NOT NULL Foreign key to entities(id) - source entity
to_entity_id INTEGER NOT NULL Foreign key to entities(id) - target entity
relation_type TEXT NOT NULL Type of relationship
properties TEXT JSON properties
created_at INTEGER Unix timestamp of creation

Foreign Keys:

  • from_entity_identities(id) ON DELETE CASCADE
  • to_entity_identities(id) ON DELETE CASCADE

Unique Constraint: (from_entity_id, to_entity_id, relation_type)

Indexes

  • idx_entities_name - Fast lookup by entity name
  • idx_entities_type - Fast lookup by entity type
  • idx_entities_name_type - Fast lookup by name+type combination
  • idx_observations_entity - Fast lookup of observations by entity
  • idx_relations_from - Fast lookup by source entity
  • idx_relations_to - Fast lookup by target entity
  • idx_relations_type - Fast lookup by relation type

Entity Relationship Diagram

┌─────────────────┐
│    entities     │
├─────────────────┤
│ id (PK)         │◄─────────────┬──────────────┐
│ name            │              │              │
│ entity_type     │              │              │
│ created_at      │              │              │
│ updated_at      │              │              │
└─────────────────┘              │              │
                                 │              │
┌─────────────────┐              │              │
│  observations   │              │              │
├─────────────────┤              │              │
│ id (PK)         │              │              │
│ entity_id (FK)  │──────────────┘              │
│ content         │  (ON DELETE CASCADE)        │
│ timestamp       │                             │
│ source          │                             │
│ created_at      │                             │
└─────────────────┘                             │
                                                │
┌─────────────────┐                             │
│   relations     │                             │
├─────────────────┤                             │
│ id (PK)         │                             │
│ from_entity_id  │─────────────────────────────┤
│ to_entity_id    │─────────────────────────────┘
│ relation_type   │  (Both FK: ON DELETE CASCADE)
│ created_at      │
└─────────────────┘

Notes:

  • All IDs are auto-generated integers
  • Deleting an entity cascades to delete all its observations and relations
  • Relations store entity IDs, but API accepts name/type which is resolved to IDs

Core Concepts

Categories

Organize memories into separate isolated databases. Each category has its own SQLite database file.

Category naming rules:

  • Lowercase letters, numbers, hyphens, underscores only
  • Cannot start with dots
  • Examples: work, personal, project-alpha, dependencies

Directory structure:

.memory/
├── work.db
├── personal.db
└── project-alpha.db

Entities

Nodes in the knowledge graph with:

  • id - Unique numeric identifier (auto-generated)
  • name - Human-readable identifier
  • entityType - Classification (e.g., "module", "class", "person", "project")
  • observations - List of facts with metadata
{
  "id": "1",
  "name": "AuthService",
  "entityType": "module",
  "observations": [
    {
      "id": "1",
      "observationType": "description",
      "text": "Handles authentication",
      "timestamp": "2025-11-19T10:30:00Z",
      "source": "code-analysis"
    },
    {
      "id": "2",
      "observationType": "location",
      "text": "Located in src/auth/",
      "timestamp": "2025-11-19T10:31:00Z",
      "source": "code-analysis"
    }
  ]
}

Relations

Directed connections between entities with their own IDs:

{
  "id": "1",
  "from": "APIController",
  "fromType": "controller",
  "to": "AuthService",
  "toType": "module",
  "relationType": "depends_on"
}

Dual Identification

All operations support identifying objects by either:

  • ID - Fast, precise, unambiguous
  • Name/Type - Human-friendly composite key

This allows flexibility when you have the ID (e.g., from a previous response) or need to reference by name.

API Tools

All tools accept optional category parameter (defaults to DEFAULT_CATEGORY).


create_entities

Create new entities in the knowledge graph.

Input:

{
  "category": "work",
  "override": false,
  "entities": [
    {
      "name": "UserService",
      "entityType": "service",
      "properties": {
        "filePath": "/src/services/user.ts",
        "tags": ["core", "authentication"]
      },
      "observations": [
        {
          "observationType": "description",
          "text": "Manages user data",
          "timestamp": "2025-11-19T10:00:00Z",
          "source": "code-analysis",
          "properties": {
            "confidence": 0.95,
            "lineNumber": 42
          }
        }
      ]
    }
  ]
}

Notes:

  • entityType defaults to empty string
  • Observations are unique by (entity, observationType, source)
  • properties is optional JSON for custom metadata (searchable)
  • override: true replaces existing entities instead of skipping them

Output:

[
  {
    "id": "1",
    "name": "UserService",
    "entityType": "service",
    "properties": {
      "filePath": "/src/services/user.ts",
      "tags": ["core", "authentication"]
    },
    "observations": [
      {
        "id": "1",
        "observationType": "description",
        "text": "Manages user data",
        "timestamp": "2025-11-19T10:00:00Z",
        "source": "code-analysis",
        "properties": {
          "confidence": 0.95,
          "lineNumber": 42
        }
      }
    ]
  }
]

create_relations

Create relationships between entities. Each endpoint can be specified by ID or name/type.

Input (using name/type):

{
  "category": "work",
  "override": false,
  "relations": [
    {
      "from": {
        "name": "APIController",
        "type": "controller"
      },
      "to": {
        "name": "UserService",
        "type": "service"
      },
      "relationType": "uses",
      "properties": {
        "weight": 0.8,
        "since": "2024-01-01"
      }
    }
  ]
}

Notes:

  • type defaults to empty string if not provided
  • properties is optional JSON for custom metadata
  • override: true updates existing relations instead of skipping them

Input (using IDs):

{
  "category": "work",
  "relations": [
    {
      "from": { "id": "1" },
      "to": { "id": "2" },
      "relationType": "uses"
    }
  ]
}

Note: You can mix ID and name/type - e.g., from by ID and to by name/type.

Output:

[
  {
    "id": "1",
    "from": "APIController",
    "fromType": "controller",
    "to": "UserService",
    "toType": "service",
    "relationType": "uses",
    "properties": {
      "weight": 0.8,
      "since": "2024-01-01"
    }
  }
]

add_observations

Add observations to existing entities. Entity can be identified by ID or name/type.

Input (using name/type):

{
  "category": "work",
  "override": false,
  "observations": [
    {
      "entityName": "UserService",
      "entityType": "service",
      "contents": [
        {
          "observationType": "version",
          "text": "Updated to v2.0",
          "timestamp": "2025-11-19T14:30:00Z",
          "source": "changelog",
          "properties": {
            "semver": "2.0.0",
            "breaking": true
          }
        },
        {
          "observationType": "feature",
          "text": "Added caching",
          "source": "changelog"
        }
      ]
    }
  ]
}

Note: override: true updates existing observations (matched by observationType+source) instead of skipping them.

Input (using entity ID):

{
  "category": "work",
  "observations": [
    {
      "entityId": "1",
      "contents": [
        {
          "observationType": "version",
          "text": "Updated to v2.0",
          "timestamp": "2025-11-19T14:30:00Z",
          "source": "release-notes"
        }
      ]
    }
  ]
}

Output:

[
  {
    "entityId": "1",
    "entityName": "UserService",
    "entityType": "service",
    "addedObservations": [
      {
        "id": "3",
        "observationType": "version",
        "text": "Updated to v2.0",
        "timestamp": "2025-11-19T14:30:00Z",
        "source": "changelog",
        "properties": {
          "semver": "2.0.0",
          "breaking": true
        }
      },
      {
        "id": "4",
        "observationType": "feature",
        "text": "Added caching",
        "timestamp": "2025-11-19T14:30:01Z",
        "source": "changelog"
      }
    ]
  }
]

delete_entities

Delete entities and their relations. Identify by ID or name/type.

Input (using name/type):

{
  "category": "work",
  "entities": [
    {
      "name": "UserService",
      "entityType": "service"
    }
  ]
}

Input (using ID):

{
  "category": "work",
  "entities": [
    { "id": "1" }
  ]
}

Output:

"Entities deleted successfully"

delete_observations

Delete specific observations. Identify by observation ID or by entity + observationType + source.

Input (using observation ID):

{
  "category": "work",
  "deletions": [
    { "id": "3" }
  ]
}

Input (using entity name + observationType + source):

{
  "category": "work",
  "deletions": [
    {
      "entityName": "UserService",
      "entityType": "service",
      "observationType": "version",
      "source": "changelog"
    }
  ]
}

Input (using entity ID + observationType + source):

{
  "category": "work",
  "deletions": [
    {
      "entityId": "1",
      "observationType": "version",
      "source": "changelog"
    }
  ]
}

Output:

"Observations deleted successfully"

delete_relations

Delete relations. Identify by relation ID or composite key.

Input (using relation ID):

{
  "category": "work",
  "relations": [
    { "id": "1" }
  ]
}

Input (using composite key):

{
  "category": "work",
  "relations": [
    {
      "from": "APIController",
      "fromType": "controller",
      "to": "UserService",
      "toType": "service",
      "relationType": "uses"
    }
  ]
}

Output:

"Relations deleted successfully"

read_graph

Get entire knowledge graph for a category.

Input:

{
  "category": "work"
}

Output:

{
  "entities": [
    {
      "id": "1",
      "name": "UserService",
      "entityType": "service",
      "observations": [
        {
          "id": "1",
          "text": "Manages user data",
          "timestamp": "2025-11-19T10:00:00Z"
        }
      ]
    }
  ],
  "relations": [
    {
      "id": "1",
      "from": "APIController",
      "fromType": "controller",
      "to": "UserService",
      "toType": "service",
      "relationType": "uses"
    }
  ]
}

search_nodes

Search by name, type, observation content, or properties (all searchable via FTS5).

Input:

{
  "category": "work",
  "query": "authentication"
}

Output:

{
  "entities": [
    {
      "id": "2",
      "name": "AuthService",
      "entityType": "service",
      "observations": [
        {
          "id": "5",
          "text": "Handles authentication",
          "timestamp": "2025-11-19T10:30:00Z"
        }
      ]
    }
  ],
  "relations": [
    {
      "id": "3",
      "from": "APIController",
      "fromType": "controller",
      "to": "AuthService",
      "toType": "service",
      "relationType": "uses"
    }
  ]
}

open_nodes

Get specific entities. Identify by ID or name/type.

Input (using name/type):

{
  "category": "work",
  "entities": [
    {
      "name": "UserService",
      "entityType": "service"
    },
    {
      "name": "AuthService",
      "entityType": "service"
    }
  ]
}

Input (using IDs):

{
  "category": "work",
  "entities": [
    { "id": "1" },
    { "id": "2" }
  ]
}

Output:

{
  "entities": [
    {
      "id": "1",
      "name": "UserService",
      "entityType": "service",
      "observations": [...]
    },
    {
      "id": "2",
      "name": "AuthService",
      "entityType": "service",
      "observations": [...]
    }
  ],
  "relations": [
    {
      "id": "2",
      "from": "UserService",
      "fromType": "service",
      "to": "AuthService",
      "toType": "service",
      "relationType": "depends_on"
    }
  ]
}

list_categories

Get all available category names.

Input:

{}

Output:

["work", "personal", "project-alpha"]

delete_category

Delete entire category and its database.

Input:

{
  "category": "old-project"
}

Output:

"Category 'old-project' deleted successfully"

Use Cases

Code Dependency Tracking

Track module dependencies per project:

{
  "category": "backend-service",
  "entities": [
    {
      "name": "AuthModule",
      "entityType": "module",
      "observations": [
        {
          "text": "Exports login, logout",
          "source": "code-analysis"
        }
      ]
    },
    {
      "name": "UserModule",
      "entityType": "module",
      "observations": [
        {
          "text": "User CRUD operations",
          "source": "documentation"
        }
      ]
    },
    {
      "name": "Database",
      "entityType": "library",
      "observations": [
        {
          "text": "PostgreSQL client"
        }
      ]
    }
  ]
}

Then create relations:

{
  "category": "backend-service",
  "relations": [
    {
      "from": { "name": "AuthModule", "type": "module" },
      "to": { "name": "UserModule", "type": "module" },
      "relationType": "imports"
    },
    {
      "from": { "name": "AuthModule", "type": "module" },
      "to": { "name": "Database", "type": "library" },
      "relationType": "uses"
    }
  ]
}

Query dependencies:

{"category": "backend-service", "query": "AuthModule"}

Multi-Project Organization

Separate categories per project:

  • project-frontend - Frontend dependencies
  • project-backend - Backend dependencies
  • project-mobile - Mobile app dependencies

Work/Personal Separation

Keep contexts isolated:

  • work - Professional contacts and projects
  • personal - Personal notes and relationships
  • learning - Study notes and resources

Development

Build

npm run build      # Compile TypeScript
npm run watch      # Watch mode

Testing

npm test           # Run all tests (141 tests)

Coverage: SQLiteStorage 98%, CategoryManager 87%, KnowledgeGraphManager 100%

Project Structure

src/
├── index.ts                    # MCP server
├── storage/
│   └── SQLiteStorage.ts        # Database operations
├── managers/
│   ├── CategoryManager.ts      # Category lifecycle & LRU cache
│   └── KnowledgeGraphManager.ts # Graph operations
└── types/
    └── graph.ts                # Type definitions

tests/
├── storage/                    # Storage layer tests
├── managers/                   # Manager tests
├── integration/                # End-to-end tests
└── benchmarks/                 # Performance benchmarks

Technical Details

Storage

  • Database: SQLite 3 with WAL mode
  • Schema: Single version, clean slate
  • Indexes: On entity names, types, relations
  • Transactions: ACID-compliant operations
  • Connection Limit: Max 50 concurrent (LRU eviction)

Security

  • Parameterized queries (SQL injection protection)
  • Category name validation (path traversal prevention)
  • Foreign key constraints
  • Cascading deletes

Performance

  • Indexed queries for fast lookups
  • WAL mode for concurrent reads
  • Connection caching with LRU eviction
  • Batch operations via transactions

Troubleshooting

Database locked error

SQLite uses WAL mode which allows concurrent reads. If you get lock errors:

  • Ensure no other process is writing to the database
  • Check file permissions on the database directory

Memory growing over time

CategoryManager implements LRU cache with default 50 connection limit. Oldest connections automatically closed when limit reached.

License

MIT License

Original work Copyright (c) 2025 Anthropic, PBC Modified work Copyright (c) 2025 DanNsk

Based on @modelcontextprotocol/server-memory

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选