Multi-Service MCP Server

Multi-Service MCP Server

Enables searching and accessing ArXiv research papers with advanced query capabilities, and provides sequential thinking tools for structured problem-solving. Supports Boolean operators, field-specific searches, author lookups, and dynamic thought processes through a modular Docker-based architecture.

Category
访问服务器

README

Multi-Service MCP Server

A modular Model Context Protocol (MCP) server that provides scaled access to ArXiv research papers and Sequential Thinking tools for Claude Desktop applications.

🏗️ Architecture

This server uses a clean, modular architecture with tools organized in separate folders:

/Users/brandont/git/mpc/
├── server.py                           # Main server file
├── services/                           # Business logic
│   ├── arxiv_service.py               # ArXiv API operations
│   └── sequential_thinking_service.py  # Sequential thinking operations
├── tools/                              # MCP tools
│   ├── arxiv_tools.py                 # ArXiv MCP tools
│   └── sequential_thinking_tools.py   # Sequential thinking MCP tools
├── utils/                              # Shared components
│   └── __init__.py                    # Base classes & models
├── README.md                           # Documentation
├── QUICKSTART.md                      # Quick start guide
├── test_server.py                     # Test suite
├── Dockerfile                         # Docker configuration
├── docker-compose.yml                 # Docker Compose setup
├── setup-docker.sh                    # Docker setup script
├── run_mcp_docker.sh                  # Docker wrapper for Claude Desktop
├── claude_desktop_config_docker.json  # Docker config template
├── requirements.txt                   # Dependencies
└── .gitignore                         # Git ignore rules

🐳 Why Docker?

Docker provides several advantages for MCP servers:

✅ Benefits

  • No Python Environment Setup: Eliminates virtual environment complexity
  • Consistent Environment: Same behavior across all systems
  • Easy Installation: Just docker build and you're ready
  • Isolation: No conflicts with system Python packages
  • Portability: Works on any system with Docker
  • Easy Updates: Rebuild image to update dependencies

🚀 Features

  • 8 ArXiv Tools: Search, details, recent papers, author papers, trending categories, advanced search, version support, phrase search
  • 3 Sequential Thinking Tools: Dynamic problem-solving, thought revision, branching analysis
  • Advanced Query Support: Boolean operators (AND, OR, ANDNOT), field-specific searches, phrase matching
  • Enhanced Metadata: Journal references, DOI links, author comments, affiliations, primary categories
  • Always Includes URLs: Every paper response includes both ArXiv abstract URL and PDF URL
  • Version Support: Access specific versions of papers
  • Docker-Based: Containerized deployment for easy setup
  • Modular Design: Easy to add new services and tools
  • Scalable Architecture: Clean separation of concerns
  • Local Operation: Runs entirely on your local machine
  • Claude Desktop Integration: Seamlessly integrates with Claude Desktop

📋 Available Tools

ArXiv Tools

  1. search_arxiv - Search papers by query with sorting options
  2. get_paper_details - Get detailed information about specific papers
  3. get_recent_papers - Get recent papers from specific categories
  4. get_papers_by_author - Get papers by specific authors
  5. get_trending_categories - Get trending categories with paper counts
  6. advanced_search - Multi-field search with Boolean operators and date ranges
  7. get_paper_by_version - Get specific versions of papers
  8. search_by_phrase - Search for exact phrases in titles, abstracts, or authors

Sequential Thinking Tools

  1. sequential_thinking - Dynamic problem-solving through structured thoughts
  2. get_thought_summary - Get summary of current thinking session
  3. clear_thought_history - Clear thought history and branches

🛠️ Installation

Prerequisites

  • Git (to clone the repository)
  • Docker (for containerized installation)

🐳 Docker Installation

Quick Setup

  1. Clone the repository:

    git clone https://github.com/brandont/arxiv-mcp-server.git
    cd arxiv-mcp-server
    
  2. Run the Docker setup script:

    chmod +x setup-docker.sh
    ./setup-docker.sh
    
  3. Test the Docker container:

    docker run --rm multi-service-mcp-server python test_server.py --test
    

Manual Setup

  1. Clone the repository:

    git clone https://github.com/brandont/arxiv-mcp-server.git
    cd arxiv-mcp-server
    
  2. Build the Docker image:

    docker build -t multi-service-mcp-server .
    
  3. Test the installation:

    docker run --rm multi-service-mcp-server python test_server.py --test
    

🔧 Claude Desktop Integration

  1. Locate your Claude Desktop configuration file:

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%\Claude\claude_desktop_config.json
  2. Add the Docker MCP server configuration:

    {
      "mcpServers": {
        "multi-service": {
          "command": "/path/to/your/multi-service-mcp-server/run_mcp_docker.sh",
          "args": []
        }
      }
    }
    

    Important: Replace /path/to/your/multi-service-mcp-server with the actual path where you cloned this repository

  3. Alternative: Use the Docker config file:

    # Copy the Docker config and update the path
    cp claude_desktop_config_docker.json ~/Library/Application\ Support/Claude/claude_desktop_config.json
    # Then edit the file to add the correct path to run_mcp_docker.sh
    
  4. Restart Claude Desktop to load the new MCP server.

Verification

Once configured, you can test the tools in Claude Desktop:

  • "Search ArXiv for papers on machine learning"
  • "Get details for paper 2301.00001"
  • "Show me recent papers in cs.AI"
  • "Get papers by author Geoffrey Hinton"
  • "What are the trending categories this month?"
  • "Advanced search: papers by Yann LeCun in cs.AI category from 2023"
  • "Get version 2 of paper 2301.00001"
  • "Search for exact phrase 'neural networks' in titles"

🔍 Advanced Search Features

Based on the ArXiv API documentation, this server supports:

Boolean Operators

  • AND - Combine search terms
  • OR - Find papers matching any term
  • ANDNOT - Exclude certain terms

Field-Specific Searches

  • au: - Author name (e.g., au:LeCun)
  • ti: - Title keywords (e.g., ti:neural networks)
  • abs: - Abstract keywords (e.g., abs:machine learning)
  • cat: - ArXiv category (e.g., cat:cs.AI)

Phrase Matching

  • Use double quotes for exact phrases: "deep learning"

Date Ranges

  • Format: YYYYMMDD (e.g., 20230101)
  • Range: submittedDate:[20230101 TO 20231231]

Example Advanced Queries

# Papers by LeCun about neural networks in AI category
au:LeCun AND ti:neural AND cat:cs.AI

# Recent papers excluding certain categories
submittedDate:[20240101 TO *] ANDNOT cat:cs.CV

# Exact phrase in abstract
abs:"transformer architecture"

🔧 Adding New Tools

The modular architecture makes adding new tools incredibly easy:

Step 1: Add Service Method

# services/arxiv_service.py
def get_papers_by_keyword(self, keyword: str) -> List[PaperInfo]:
    """Get papers containing a specific keyword."""
    # Implementation here
    pass

Step 2: Add Tool

# tools/arxiv_tools.py
@self.mcp.tool()
async def get_papers_by_keyword(keyword: str) -> str:
    """
    Get papers containing a specific keyword.
    
    Args:
        keyword: Keyword to search for
    
    Returns:
        JSON string containing matching papers
    """
    try:
        results = self.service.get_papers_by_keyword(keyword)
        return json.dumps([paper.model_dump() for paper in results], indent=2)
    except Exception as e:
        return json.dumps({"error": str(e)})

Step 3: Restart Server

That's it! The tool is automatically registered and available in Claude Desktop.

🏗️ Adding New Services

To add a completely new service (e.g., Weather, News):

Step 1: Create Service

# services/weather_service.py
from utils import BaseService

class WeatherService(BaseService):
    def get_name(self) -> str:
        return "Weather"
    
    def get_weather(self, city: str) -> dict:
        # Weather API logic
        pass

Step 2: Create Tool Provider

# tools/weather_tools.py
from utils import BaseToolProvider

class WeatherToolProvider(BaseToolProvider):
    def _register_tools(self):
        @self.mcp.tool()
        async def get_weather(city: str) -> str:
            """Get weather for a city."""
            result = self.service.get_weather(city)
            return json.dumps(result, indent=2)

Step 3: Register in Main Server

# server.py
from mcp.server.fastmcp import FastMCP
from services.arxiv_service import ArXivService
from services.weather_service import WeatherService
from tools.arxiv_tools import ArXivToolProvider
from tools.weather_tools import WeatherToolProvider

# Create the MCP server
mcp = FastMCP("Multi-Service MCP Server")

# Initialize services and tools
arxiv_service = ArXivService()
arxiv_tools = ArXivToolProvider(mcp, arxiv_service)

weather_service = WeatherService()
weather_tools = WeatherToolProvider(mcp, weather_service)

🧪 Testing

Run the test suite to verify everything works:

docker run --rm multi-service-mcp-server python test_server.py --test

🚨 Troubleshooting

Common Issues

  1. Claude Desktop not recognizing the server:
    • Check that the path in the configuration file points to run_mcp_docker.sh
    • Ensure Claude Desktop is restarted after configuration changes
    • Verify the wrapper script is executable: chmod +x run_mcp_docker.sh
  2. ArXiv API errors:
    • Check your internet connection and ArXiv accessibility
    • Some queries may fail due to ArXiv API limits
  3. Docker issues:
    • Make sure Docker is installed and running: docker --version
    • For Docker daemon issues, restart Docker Desktop
    • Ensure the Docker image is built: docker build -t multi-service-mcp-server .
  4. Permission errors on setup script:
    • Run chmod +x setup-docker.sh to make the script executable

Getting Help

  • Check logs for detailed error information
  • Run the test suite to verify functionality: docker run --rm multi-service-mcp-server python test_server.py --test
  • Ensure Docker is properly installed and running
  • Verify the Docker image is built correctly

📊 Technical Details

  • Framework: Built using the official MCP Python SDK
  • Architecture: Modular service-based design
  • Deployment: Docker containerized
  • ArXiv Access: Uses the arxiv Python library
  • Transport: STDIO transport for Claude Desktop integration
  • Tool Definition: Auto-generated from Python type hints and docstrings

📄 License

This project is open source and available under the MIT License.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选