Multi-Source Documentation MCP Server
Enables AI assistants to search and query documentation from multiple sources including Voiceflow and Claude Code, with full-text search, code examples retrieval, and step-by-step tutorials access.
README
Multi-Source Documentation MCP Server
A Model Context Protocol (MCP) server that enables AI assistants like Claude to search and query documentation from multiple sources. Currently supports Voiceflow and Claude Code documentation.
🚀 Quick Start
Prerequisites
- Python 3.10 or higher
- uv package manager
Installation
# Clone the repository
git clone <your-repo-url>
cd voiceflow-docs-mcp
# Install dependencies
uv sync
Running the Server
# Run directly
uv run voiceflow-docs-mcp
# Or as a Python module
python -m voiceflow_docs_mcp.server
🔧 Configuration
Claude Desktop Integration
Add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"voiceflow-docs": {
"command": "uv",
"args": ["run", "voiceflow-docs-mcp"],
"cwd": "/absolute/path/to/voiceflow-docs-mcp"
}
}
}
After adding the configuration, restart Claude Desktop.
📚 Available Tools
The server provides 6 specialized tools for documentation access:
| Tool | Description |
|---|---|
search_documentation |
Full-text search across all documentation sources with relevance ranking |
get_document |
Retrieve a specific document by its exact path or identifier |
search_code_examples |
Search for code snippets and examples across documentation |
list_categories |
List available documentation categories and topics |
get_integration_docs |
Get integration-specific documentation and guides |
find_step_documentation |
Find step-by-step tutorials and walkthroughs |
📁 Project Structure
voiceflow-docs-mcp/
├── voiceflow_docs_mcp/ # Main MCP server package
│ ├── __init__.py # Package initialization
│ ├── server.py # MCP server implementation (6 tools)
│ ├── db_manager.py # SQLite database operations
│ ├── config.py # Configuration and environment handling
│ └── parser.py # Markdown documentation parser
│
├── data/ # Documentation content (1.3 MB)
│ ├── voiceflow_docs/ # 182 Voiceflow documentation files
│ └── claude_code_docs/ # 12 Claude Code documentation files
│
├── .claude/ # Claude Code configuration
│ ├── QUICK_START.md # Quick start guide
│ ├── README.md # Claude-specific readme
│ └── settings.local.json # Local settings (gitignored)
│
├── .gitignore # Git ignore rules
├── .python-version # Python version specification (3.10+)
├── pyproject.toml # Project metadata and dependencies
├── uv.lock # Locked dependency versions
├── LICENSE # MIT License
└── README.md # This file
🛠️ Technical Details
Documentation Database
- Storage: SQLite database with full-text search (FTS5)
- Sources: Multi-source support (Voiceflow, Claude Code, extensible)
- Indexing: Automatic on first run, incremental updates supported
- Search: Full-text search with BM25 relevance ranking
Dependencies
| Package | Purpose |
|---|---|
fastmcp |
MCP server framework |
beautifulsoup4 |
HTML parsing and cleaning |
httpx |
Async HTTP client for fetching docs |
markdownify |
HTML to Markdown conversion |
playwright |
Web scraping for documentation |
python-frontmatter |
Parse YAML frontmatter in Markdown |
pyyaml |
YAML processing |
Data Sources
Voiceflow Documentation (182 files)
- Complete Voiceflow platform documentation
- API references, guides, tutorials
- Integration documentation
Claude Code Documentation (12 files)
- Claude Code feature documentation
- Setup and configuration guides
- Best practices and troubleshooting
🔍 Usage Examples
Searching Documentation
# When connected to Claude Desktop, you can ask:
"Search the Voiceflow docs for information about API blocks"
"Find code examples for integrating with external APIs"
"What are the available Voiceflow integrations?"
"Show me step-by-step guides for setting up a voice assistant"
Querying Specific Documents
# Ask Claude to retrieve specific documentation:
"Get the document about Voiceflow agent variables"
"Show me the integration docs for Zapier"
"Find the documentation on condition blocks"
🧪 Development
Project Status
- ✅ Multi-source documentation support
- ✅ Full-text search with relevance ranking
- ✅ 6 specialized MCP tools
- ✅ SQLite database with FTS5
- ✅ Automatic documentation indexing
- ✅ Claude Desktop integration
Adding New Documentation Sources
The server is designed to support multiple documentation sources. To add a new source:
- Add documentation files to
data/your-source-name/ - Update configuration in
voiceflow_docs_mcp/config.py - The server will automatically index new files on restart
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Development Setup
# Clone and install
git clone <your-repo-url>
cd voiceflow-docs-mcp
uv sync
# Run in development mode
uv run python -m voiceflow_docs_mcp.server
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built with FastMCP - A Python framework for MCP servers
- Documentation sourced from Voiceflow and Claude Code
- Designed for use with Claude Desktop
📞 Support
For issues, questions, or contributions, please open an issue on GitHub.
Note: This is an unofficial community project and is not affiliated with Anthropic or Voiceflow.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。