MyCareersFuture MCP Server

MyCareersFuture MCP Server

Enables users to search for job opportunities in Singapore through the MyCareersFuture public API. Provides live job search dashboards with rich UI components for exploring software engineering and other job openings.

Category
访问服务器

README

MyCareersFuture MCP Server Demo

MIT License

This repository hosts a proof-of-concept Model Context Protocol (MCP) server that wraps the public MyCareersFuture (MCF) job search API. It illustrates how to render this in ChatGPT with the Apps SDK.

Screenshot of the MyCareersFuture widget rendered inside ChatGPT

MCP + MyCareersFuture overview

The MCP server accepts structured tool requests, forwards them to the MCF API, and returns:

  1. Structured JSON describing the queried job listings (titles, companies, salary hints, metadata).
  2. An _meta.openai/outputTemplate pointer to a static widget bundle so compatible clients (such as ChatGPT with the Apps SDK) can render an interactive carousel.

Each call is validated with Pydantic models, logged for observability, and kept intentionally simple to serve as an approachable starting point for your own integrations. For a deeper breakdown of the server implementation, see MCP_SERVER.md.

Repository structure

  • mycareersfuture_server_python/ – FastAPI/uvicorn MCP server sourcing jobs from the MCF API.
  • src/ – Widget source code (MyCareersFuture carousel and Todo example) used when building UI assets.
  • assets/ – Generated HTML/JS/CSS bundles created during the build step.
  • build-all.mts – Vite build orchestration script that packages per-widget assets.

Prerequisites

  • Node.js 18+
  • pnpm (recommended) or npm/yarn
  • Python 3.10+

Install dependencies

Clone the repository and install JavaScript dependencies for the widget build:

pnpm install

If you prefer npm or yarn, install the root dependencies with your client of choice and adjust the commands below accordingly.

Build widget assets

The MCP server serves static bundles that power the MyCareersFuture widget. Build them before running the server:

pnpm run build

This executes build-all.mts, producing versioned .html, .js, and .css files in assets/. Each widget includes its required CSS so you can host or distribute the bundles independently.

To iterate locally, use the Vite dev server:

pnpm run dev

If you want to preview the generated bundles without the MCP server, run the static file server after building:

pnpm run serve

This exposes the compiled assets at http://localhost:4444 with CORS enabled for local tooling.

Run the MCP server

Create a virtual environment, install the Python dependencies, and start the FastAPI server:

python -m venv .venv
source .venv/bin/activate
pip install -r mycareersfuture_server_python/requirements.txt
uvicorn mycareersfuture_server_python.main:app --port 8000

The server listens for standard MCP requests over HTTP/SSE and exposes a single tool, mycf-job-list, which queries live jobs and returns structured results with widget metadata.

Apps SDK integration (optional)

This project also demonstrates how the MyCareersFuture MCP responses can light up a front-end experience in ChatGPT. When the _meta.openai/outputTemplate field references the bundled widget, the Apps SDK renders:

  • A horizontal carousel of job cards with titles, employers, salary hints, and metadata.
  • Inline navigation controls for exploring multiple roles.

Using the Apps SDK is optional; MCP-compatible clients can consume the structured JSON without rendering the widget.

Test in ChatGPT

Enable developer mode in ChatGPT, add the MCP server as a connector, and (if necessary) expose the local instance using a tunneling tool such as ngrok:

ngrok http 8000

Add the connector URL (for example, https://<custom_endpoint>.ngrok-free.app/mcp), enable the connector in a conversation, and ask questions like “Find software engineering openings in Singapore.” ChatGPT will call mycf-job-list, receive structured job data, and—when using the Apps SDK—render the bundled widget.

Next steps

  • Customize the MCP handler in mycareersfuture_server_python/main.py to call additional APIs or enforce business rules.
  • Add new widgets under src/ and extend the build script to package them.
  • Harden the server for production (authentication, caching, rate limiting) before deploying to user-facing environments.

Contributing

Contributions are welcome, but please note that we may not be able to review every suggestion.

License

This project is licensed under the MIT License. See LICENSE for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选