MyFitnessPal MCP Server
Enables retrieval and analysis of MyFitnessPal nutrition data including daily summaries, meal breakdowns, exercise tracking, and macro/micronutrient analysis. Uses browser cookie authentication to access your personal MyFitnessPal account data through natural language queries.
README
MyFitnessPal MCP Server
A FastMCP server that retrieves your MyFitnessPal nutrition data through the Model Context Protocol.
Quick Start
Local Development
- Prerequisites: Python 3.12+, uv, MyFitnessPal account
- Install dependencies:
uv sync - Log into MyFitnessPal in your browser (Chrome, Firefox, Safari, or Edge)
- Test the server:
uv run python test_client.py
Deployment (Server/Docker)
For environments without a browser:
-
Export cookies from your local browser:
uv run python export_cookies.py -
Deploy with the generated
.envfile - no browser needed!
See Deployment Guide for Docker, systemd, and cloud deployment options.
Features
- Daily nutrition summary (calories, macros, water)
- Detailed meal-by-meal breakdown
- Exercise tracking (cardio + strength)
- Macro & micronutrient analysis
- Water intake monitoring
- Date range summaries with trends
Configuration
Add to your MCP client config (e.g., .cursor/mcp.json):
{
"mcpServers": {
"myfitnesspal": {
"type": "stdio",
"command": "uv",
"args": ["run", "--directory", "/path/to/mfp-mcp", "python", "main.py"]
}
}
}
Documentation
- Full Documentation - Complete setup and usage guide
- Deployment Guide - Docker, server, and cloud deployment
- Quick Start Guide - Fast setup instructions
- Project Summary - Architecture and design decisions
- Implementation Notes - Technical details
How It Works
Uses the python-myfitnesspal library (GitHub version) which:
- Extracts cookies from your browser automatically
- Scrapes MyFitnessPal website for data
- No credentials stored in files
- Works with Chrome, Firefox, Safari, and Edge
Cookie Authentication
Browser-based (default):
- Automatically extracts cookies from your local browser
- Works out of the box if you're logged into MyFitnessPal
Environment variable (for Docker/servers):
- Set
MFP_COOKIESenvironment variable with exported cookies - Use
export_cookies.pyutility to extract cookies beforehand:uv run python export_cookies.py - Perfect for environments without browser access (Docker containers, remote servers, etc.)
- Cookies expire after ~30 days, re-export when needed
Project Structure
mfp-mcp/
├── docs/ # All documentation
├── myfitnesspal/ # External library (GitHub)
├── main.py # FastMCP server
├── api_client.py # Client wrapper
├── utils.py # Helper functions
├── test_client.py # Test script
└── pyproject.toml # Dependencies
Requirements
- Python 3.12+
- uv package manager
- Active MyFitnessPal session in browser
- fastmcp 2.12+
- lxml, browser-cookie3, measurement
License
For personal use and educational purposes. Respect MyFitnessPal's Terms of Service.
Credits
- python-myfitnesspal: https://github.com/coddingtonbear/python-myfitnesspal
- FastMCP: https://github.com/jlowin/fastmcp
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。