MySQL MCP
Enables management and querying of multiple MySQL databases through natural language, allowing AI assistants to list databases, execute SQL queries, and explore database schemas.
README
MySQL MCP (Management Control Plane)
A system for managing multiple MySQL databases with natural language query support, built with FastMCP framework.
Features
- Manage multiple MySQL database connections
- Store metadata about all managed databases in a central metadata database
- Query data using natural language
- Built with FastMCP framework for easy integration with AI assistants
Installation
- Install Python 3.7+
- Install required packages:
pip install -r requirements.txt
Setup
-
Create a MySQL database for storing metadata:
mysql -u root -p < init_metadata_db.sql -
Update
config.iniwith your metadata database connection details:[metadata_db] host = localhost port = 3306 user = your_username password = your_password database = metadata_db -
Add your database connections to the metadata database using the provided SQL schema.
Usage
Run the FastMCP server:
python mysql_mcp_server.py
Once the server is running, you can access the SSE endpoint at:
http://localhost:8000/sse
The server exposes the following tools:
list_databases()- List all registered databasesexecute_query(database_id, query)- Execute a SQL query on a specific databasenatural_language_query(database_id, natural_query)- Execute a natural language query on a specific databaseget_database_tables(database_id)- Get list of tables in a specific database
Configuration
All configuration is stored in config.ini:
metadata_db: Connection details for the metadata databaseapp: Application settings
Architecture
mysql_mcp_server.py: FastMCP server implementationdb_manager.py: Database connection and management logicnlp_processor.py: Natural language processing to convert queries to SQLdatabase_models.py: Data classes representing database entitiesconfig.ini: Configuration fileinit_metadata_db.sql: Schema for the metadata databaserequirements.txt: Python dependencies
Extending the System
To improve natural language processing capabilities:
- Enhance the
natural_language_queryfunction inmysql_mcp_server.py - Add more patterns to recognize different query types
- Consider integrating with advanced NLP libraries like spaCy or NLTK
Integration with AI Assistants
This FastMCP server can be integrated with AI assistants that support the Model Context Protocol (MCP), allowing them to:
- List available databases
- Execute SQL queries
- Process natural language queries
- Explore database schemas
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。