NameChecker MCP Server

NameChecker MCP Server

Enables AI assistants to perform real-time domain name availability checks and validate domain syntax according to RFC standards. It supports both stdio and SSE transports to bridge the gap between AI models and domain registration services.

Category
访问服务器

README

NameChecker MCP Server

A Model Context Protocol (MCP) server that provides AI assistants with domain name availability checking capabilities. This server enables AI models to check if domain names are available for registration and validate domain syntax in real-time.

🎯 Purpose

The NameChecker MCP Server bridges the gap between AI assistants and domain registration services by providing:

  • Real-time Domain Availability Checking: Instant verification of domain name availability
  • Domain Syntax Validation: RFC-compliant domain name format validation
  • AI-Friendly Integration: Seamless integration with AI assistants through the MCP protocol
  • Flexible Transport Options: Support for both stdio and Server-Sent Events (SSE) transports

🛠 Available Tools

1. check_domain_availability

Checks if a domain name is available for registration.

Parameters:

  • domain (string, required): Domain name to check (with or without TLD)
  • tld (string, optional): Top-level domain, defaults to "com"

Returns: Boolean indicating availability (true = available, false = unavailable)

Example Usage:

{
  "name": "check_domain_availability",
  "arguments": {
    "domain": "my-awesome-startup",
    "tld": "com"
  }
}

2. validate_domain_syntax

Validates domain name syntax according to RFC standards.

Parameters:

  • domain (string, required): Domain name to validate

Returns: Object with validation results and details

Example Usage:

{
  "name": "validate_domain_syntax",
  "arguments": {
    "domain": "my-domain.com"
  }
}

Sample Response:

{
  "valid": true,
  "domain": "my-domain",
  "tld": "com",
  "full_domain": "my-domain.com",
  "length": 13
}

📦 Installation

Prerequisites

  • Python 3.9 or higher
  • pip (Python package manager)

Install from Source

# Clone the repository
git clone <repository-url>
cd namechecker-mcp

# Install in development mode
pip install -e ".[dev]"

Install Dependencies Only

pip install mcp httpx pydantic

🚀 Usage

Command Line Options

# Run with default stdio transport
python main.py

# Run with SSE transport on port 8000
python main.py --transport sse --port 8000

# Run with custom settings
python main.py --transport stdio --log-level DEBUG --timeout 60

# Show help
python main.py --help

Available Arguments:

  • --transport: Transport protocol (stdio or sse, default: stdio)
  • --port: Port number for SSE transport (default: 8000)
  • --log-level: Logging verbosity (DEBUG, INFO, WARNING, ERROR, default: INFO)
  • --timeout: Request timeout in seconds (default: 30)

MCP Client Configuration

To use this server with an MCP-compatible client (like Claude Desktop, Cline, or other AI assistants), add it to your MCP configuration file.

For Claude Desktop (config.json)

Location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%/Claude/claude_desktop_config.json

Configuration:

{
  "mcpServers": {
    "namechecker": {
      "command": "python",
      "args": ["/path/to/namechecker-mcp/main.py"],
      "env": {
        "LOG_LEVEL": "INFO"
      }
    }
  }
}

For Cline VSCode Extension

Add to your Cline MCP settings:

{
  "mcpServers": {
    "namechecker": {
      "command": "python",
      "args": ["/absolute/path/to/main.py"],
      "cwd": "/absolute/path/to/namechecker-mcp"
    }
  }
}

For Custom MCP Clients

Stdio Transport Configuration:

{
  "name": "namechecker",
  "transport": {
    "type": "stdio",
    "command": "python",
    "args": ["/path/to/main.py"]
  }
}

SSE Transport Configuration:

{
  "name": "namechecker",
  "transport": {
    "type": "sse",
    "url": "http://localhost:8000/messages"
  }
}

🔧 Development

Project Structure

namechecker-mcp/
├── main.py              # Main MCP server implementation
├── pyproject.toml       # Project configuration and dependencies
├── tests/               # Unit tests
│   ├── __init__.py
│   └── test_domain_checker.py
├── details/             # Project documentation
│   └── PRD.md          # Product Requirements Document
├── .cursor/             # Cursor IDE rules
│   └── rules/
└── README.md           # This file

Running Tests

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest tests/ -v

# Run tests with coverage
pytest tests/ --cov=main --cov-report=html

Code Quality

# Format code
black .

# Lint code
ruff check .

# Type checking
mypy main.py

📝 Usage Examples

Example 1: Check Single Domain

# Through MCP client
result = await mcp_client.call_tool("check_domain_availability", {
    "domain": "my-startup-idea"
})
# Returns: true or false

Example 2: Validate Domain Syntax

# Through MCP client
result = await mcp_client.call_tool("validate_domain_syntax", {
    "domain": "my-domain.co.uk"
})
# Returns: {"valid": true, "domain": "my-domain", "tld": "co.uk", ...}

Example 3: Bulk Domain Checking

# Check multiple domains through AI assistant
domains = ["startup1.com", "startup2.net", "startup3.org"]
results = []
for domain in domains:
    available = await mcp_client.call_tool("check_domain_availability", {
        "domain": domain
    })
    results.append({"domain": domain, "available": available})

🌟 Features

Current Features

  • ✅ Domain availability checking via DNS resolution
  • ✅ Mock WHOIS API integration (ready for real API)
  • ✅ RFC-compliant domain syntax validation
  • ✅ Stdio transport support
  • ✅ SSE transport implementation
  • ✅ Comprehensive input validation
  • ✅ Error handling and logging
  • ✅ Command-line interface
  • ✅ Health check endpoint for SSE transport
  • ✅ CORS support for web clients

🔍 How It Works

  1. Domain Validation: Input domains are validated for proper format and syntax
  2. Availability Checking: The server uses multiple methods to check availability:
    • Primary: WHOIS API services (currently mocked)
    • Fallback: DNS resolution checking
  3. Result Processing: Results are returned as boolean values or detailed objects
  4. Error Handling: Comprehensive error handling with meaningful messages

🚨 Limitations

  • Mock WHOIS API: Currently uses a mock implementation for testing
  • DNS-Based Checking: Fallback method may not be 100% accurate for all domains
  • Rate Limiting: No built-in rate limiting (depends on external APIs)

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Guidelines

  • Follow the coding standards defined in .cursor/rules/
  • Write tests for new functionality
  • Update documentation as needed
  • Use type hints for all functions

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🐛 Troubleshooting

Common Issues

1. "Module not found" errors

# Ensure dependencies are installed
pip install -e ".[dev]"

2. Permission denied

# Make sure the script is executable
chmod +x main.py

3. MCP client can't connect

  • Verify the correct path in your MCP configuration
  • Check that Python is available in your PATH
  • Review logs for error messages

4. Domain checks always return False

  • Check network connectivity
  • Verify DNS resolution is working
  • Review timeout settings

Debug Mode

# Run with detailed logging
python main.py --log-level DEBUG

🔗 Related Resources

📞 Support

For questions, issues, or contributions:

  • Create an issue in the GitHub repository
  • Review the PRD document in details/PRD.md
  • Check the development rules in .cursor/rules/

Built with ❤️ for the AI community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选