Nano-Banana-MCP

Nano-Banana-MCP

A Nano Banana MCP server, which you can integrate to cursor/claude code and any mcp client

Category
访问服务器

README

Nano-Banana MCP Server 🍌

🤖 This project was entirely generated by Claude Code - an AI coding assistant that can create complete, production-ready applications from scratch.

A Model Context Protocol (MCP) server that provides AI image generation and editing capabilities using Google's Gemini 2.5 Flash Image API. Generate stunning images, edit existing ones, and iterate on your creations with simple text prompts.

✨ Features

  • 🎨 Generate Images: Create new images from text descriptions
  • ✏️ Edit Images: Modify existing images with text prompts
  • 🔄 Iterative Editing: Continue editing the last generated/edited image
  • 🖼️ Multiple Reference Images: Use reference images for style transfer and guidance
  • 🌍 Cross-Platform: Smart file paths for Windows, macOS, and Linux
  • 🔧 Easy Setup: Simple configuration with API key
  • 📁 Auto File Management: Automatic image saving with organized naming

🔑 Setup

  1. Get your Gemini API key:

  2. Configure the MCP server: See configuration examples for your specific client below (Claude Code, Cursor, or other MCP clients).

💻 Usage with Claude Code

Configuration:

Add this to your Claude Code MCP settings:

Option A: With environment variable (Recommended - Most Secure)

{
  "mcpServers": {
    "nano-banana": {
      "command": "npx",
      "args": ["nano-banana-mcp"],
      "env": {
        "GEMINI_API_KEY": "your-gemini-api-key-here"
      }
    }
  }
}

Option B: Without environment variable

{
  "mcpServers": {
    "nano-banana": {
      "command": "npx",
      "args": ["nano-banana-mcp"]
    }
  }
}

Usage Examples:

Generate an image of a sunset over mountains
Edit this image to add some birds in the sky
Continue editing to make it more dramatic

🎯 Usage with Cursor

Configuration:

Add to your Cursor MCP configuration:

Option A: With environment variable (Recommended)

{
  "nano-banana": {
    "command": "npx",
    "args": ["nano-banana-mcp"],
    "env": {
      "GEMINI_API_KEY": "your-gemini-api-key-here"
    }
  }
}

Option B: Without environment variable

{
  "nano-banana": {
    "command": "npx",
    "args": ["nano-banana-mcp"]
  }
}

Usage Examples:

  • Ask Cursor to generate images for your app
  • Create mockups and prototypes
  • Generate assets for your projects

🔧 For Other MCP Clients

If you're using a different MCP client, you can configure nano-banana-mcp using any of these methods:

Configuration Methods

Method A: Environment Variable in MCP Config (Recommended)

{
  "nano-banana": {
    "command": "npx",
    "args": ["nano-banana-mcp"],
    "env": {
      "GEMINI_API_KEY": "your-gemini-api-key-here"
    }
  }
}

Method B: System Environment Variable

export GEMINI_API_KEY="your-gemini-api-key-here"
npx nano-banana-mcp

Method C: Using the Configure Tool

npx nano-banana-mcp
# The server will prompt you to configure when first used
# This creates a local .nano-banana-config.json file

🛠️ Available Commands

generate_image

Create a new image from a text prompt.

generate_image({
  prompt: "A futuristic city at night with neon lights"
})

edit_image

Edit a specific image file.

edit_image({
  imagePath: "/path/to/image.png",
  prompt: "Add a rainbow in the sky",
  referenceImages?: ["/path/to/reference.jpg"] // optional
})

continue_editing

Continue editing the last generated/edited image.

continue_editing({
  prompt: "Make it more colorful",
  referenceImages?: ["/path/to/style.jpg"] // optional
})

get_last_image_info

Get information about the last generated image.

get_last_image_info()

configure_gemini_token

Configure your Gemini API key.

configure_gemini_token({
  apiKey: "your-gemini-api-key"
})

get_configuration_status

Check if the API key is configured.

get_configuration_status()

⚙️ Configuration Priority

The MCP server loads your API key in the following priority order:

  1. 🥇 MCP Configuration Environment Variables (Highest Priority)

    • Set in your claude_desktop_config.json or MCP client config
    • Most secure as it's contained within the MCP configuration
    • Example: "env": { "GEMINI_API_KEY": "your-key" }
  2. 🥈 System Environment Variables

    • Set in your shell/system environment
    • Example: export GEMINI_API_KEY="your-key"
  3. 🥉 Local Configuration File (Lowest Priority)

    • Created when using the configure_gemini_token tool
    • Stored as .nano-banana-config.json in current directory
    • Automatically ignored by Git and NPM

💡 Recommendation: Use Method 1 (MCP config env variables) for the best security and convenience.

📁 File Storage

Images are automatically saved to platform-appropriate locations:

  • Windows: %USERPROFILE%\\Documents\\nano-banana-images\\
  • macOS/Linux: ./generated_imgs/ (in current directory)
  • System directories: ~/nano-banana-images/ (when run from system paths)

File naming convention:

  • Generated images: generated-[timestamp]-[id].png
  • Edited images: edited-[timestamp]-[id].png

🎨 Example Workflows

Basic Image Generation

  1. generate_image - Create your base image
  2. continue_editing - Refine and improve
  3. continue_editing - Add final touches

Style Transfer

  1. generate_image - Create base content
  2. edit_image - Use reference images for style
  3. continue_editing - Fine-tune the result

Iterative Design

  1. generate_image - Start with a concept
  2. get_last_image_info - Check current state
  3. continue_editing - Make adjustments
  4. Repeat until satisfied

🔧 Development

This project was created with Claude Code and follows these technologies:

  • TypeScript - Type-safe development
  • Node.js - Runtime environment
  • Zod - Schema validation
  • Google GenAI - Image generation API
  • MCP SDK - Model Context Protocol

Local Development

# Clone the repository
git clone https://github.com/claude-code/nano-banana-mcp.git
cd nano-banana-mcp

# Install dependencies
npm install

# Run in development mode
npm run dev

# Build for production
npm run build

# Run tests
npm test

📋 Requirements

  • Node.js 18.0.0 or higher
  • Gemini API key from Google AI Studio
  • Compatible with Claude Code, Cursor, and other MCP clients

🤝 Contributing

This project was generated by Claude Code, but contributions are welcome! Please feel free to:

  • Report bugs
  • Suggest new features
  • Submit pull requests
  • Improve documentation

📄 License

MIT License - see LICENSE file for details.

🙏 Acknowledgments

  • Claude Code - For generating this entire project
  • Google AI - For the powerful Gemini 2.5 Flash Image API
  • Anthropic - For the Model Context Protocol
  • Open Source Community - For the amazing tools and libraries

📞 Support


✨ Generated with love by Claude Code - The future of AI-powered development is here!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选