Native_MCP
An extensible Model Context Protocol server that enables AI assistants like Claude to generate React Native components and perform development tasks through a standardized interface.
Tools
generate_component
Generate a React Native component
README
Native_MCP
A Model Context Protocol (MCP) server for React Native development tools and utilities.
<a href="https://glama.ai/mcp/servers/@ArkVex/Native_MCP"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@ArkVex/Native_MCP/badge" alt="Native_MCP MCP server" /> </a>
🚀 Overview
Native_MCP is an extensible MCP server that provides tools and utilities for React Native development. It allows AI assistants like Claude to generate React Native components and perform other development tasks through a standardized protocol.
✨ Features
- React Native Component Generator: Automatically generate React Native components with proper structure
- Extensible Tool System: Add custom tools through a simple plugin architecture
- MCP Protocol Compliance: Full compatibility with Model Context Protocol 2025-06-18
- Dynamic Tool Loading: Tools are loaded dynamically from the
tools/directory
🛠️ Available Tools
React Native Helper
- generate_component: Generate a basic React Native functional component
- Input:
component_name(string) - Output: Complete React Native component code with View and Text elements
- Input:
📋 Prerequisites
- Python 3.12 or higher
- uv package manager
- VS Code with Claude extension (for MCP integration)
🔧 Installation
-
Clone the repository:
git clone https://github.com/ArkVex/Native_MCP.git cd Native_MCP -
Install dependencies:
uv sync -
Verify installation:
uv run mcp_server.py
🚀 Usage
With Claude in VS Code
-
Configure the MCP server in your Claude settings:
{ "mcpServers": { "native-mcp": { "command": "uv", "args": [ "--directory", "C:\\path\\to\\Native_MCP", "run", "mcp_server.py" ] } } } -
Start using the tools in Claude:
- Ask Claude to "generate a React Native component called LoginScreen"
- Claude will use the
generate_componenttool automatically
Manual Testing
You can test the server manually using JSON-RPC:
# Initialize the server
echo '{"method":"initialize","params":{"protocolVersion":"2025-06-18","capabilities":{},"clientInfo":{"name":"test-client","version":"0.1.0"}},"jsonrpc":"2.0","id":0}' | uv run mcp_server.py
# List available tools
echo '{"method":"tools/list","params":{},"jsonrpc":"2.0","id":1}' | uv run mcp_server.py
# Generate a component
echo '{"method":"tools/call","params":{"name":"generate_component","arguments":{"component_name":"MyButton"}},"jsonrpc":"2.0","id":2}' | uv run mcp_server.py
📁 Project Structure
Native_MCP/
├── mcp_server.py # Main MCP server implementation
├── pyproject.toml # Project configuration
├── requirements.txt # Python dependencies
├── tools/ # Tool plugins directory
│ └── react-native-helper/
│ ├── main.py # Tool implementation
│ └── mcp.json # Tool metadata
├── .venv/ # Virtual environment
└── README.md # This file
🔌 Adding Custom Tools
To add a new tool to the server:
-
Create a tool directory:
mkdir tools/my-custom-tool -
Create the tool implementation (
tools/my-custom-tool/main.py):def my_function(params): # Your tool logic here result = params.get("input", "default") return {"output": f"Processed: {result}"} -
Create the tool metadata (
tools/my-custom-tool/mcp.json):{ "name": "my-custom-tool", "entry_point": "main.py", "commands": { "my_function": { "description": "Description of what this tool does", "params": { "input": "string" } } } } -
Restart the server - tools are loaded automatically
🐛 Troubleshooting
Server Won't Start
- Ensure Python 3.12+ is installed
- Verify
uvis installed and in your PATH - Check that all dependencies are installed with
uv sync
Tools Not Loading
- Verify tool directory structure matches the expected format
- Check that
mcp.jsonis valid JSON - Ensure the entry point file exists and functions are named correctly
Connection Issues
- Verify the MCP server path in your Claude configuration
- Check that the server process isn't already running
- Review the Claude extension logs for detailed error messages
📖 API Reference
MCP Protocol Methods
initialize: Initialize the server connectiontools/list: Get list of available toolstools/call: Execute a specific toolresources/list: List available resources (currently empty)prompts/list: List available prompts (currently empty)
Tool Response Format
Tools return responses in the MCP standard format:
{
"content": [
{
"type": "text",
"text": "Tool output here"
}
]
}
🤝 Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/new-tool - Make your changes and add tests
- Commit your changes:
git commit -am 'Add new tool' - Push to the branch:
git push origin feature/new-tool - Submit a pull request
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Model Context Protocol for the specification
- Anthropic for Claude and MCP support
- React Native community for inspiration
📞 Support
If you encounter any issues or have questions:
- Check the Troubleshooting section
- Search existing GitHub Issues
- Create a new issue with detailed information about your problem
Made with ❤️ for the React Native and AI development community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。