nebulablock-mcp-server

nebulablock-mcp-server

This server integrates with the fastmcp library to expose the full range of NebulaBlock API functionalities as accessible tools, enabling seamless and efficient interaction within any MCP-compatible environment.

Category
访问服务器

README

NebulaBlock API MCP

This repository hosts the official NebulaBlock API Model Context Protocol (MCP) server. This server integrates with the fastmcp library to expose the full range of NebulaBlock API functionalities as accessible tools, enabling seamless and efficient interaction within any MCP-compatible environment.

Project Structure

.
├── src/
│   ├── __init__.py
│   ├── config.py
│   ├── main.py
│   ├── tools.py
│   └── mcp_project.egg-info/
├── tests/
│   ├── __init__.py
│   └── test_main.py
├── scripts/
├── docs/
├── .env.example
├── .gitignore
├── pyproject.toml
├── README.md
└── uv.lock
  • src/: Contains the main application source code, including configuration and tool definitions.
  • tests/: Contains unit and integration tests.
  • scripts/: Reserved for utility scripts (e.g., setup, data generation).
  • docs/: Reserved for supplementary documentation.
  • .env.example: Example file for environment variables.
  • .gitignore: Specifies intentionally untracked files to ignore.
  • pyproject.toml: Project metadata and build system configuration, including dependencies and project information.
  • README.md: This documentation file.
  • uv.lock: Lock file for uv dependency management.

Installation and Setup

To set up and run this project, follow these steps:

  1. Clone the repository (if applicable):

    git clone https://github.com/Nebula-Block-Data/api-mcp
    cd mcp-project
    
  2. Create a virtual environment: It's highly recommended to use a virtual environment to manage project dependencies.

    python3 -m venv .venv
    
  3. Activate the virtual environment:

    • macOS/Linux:
source .venv/bin/activate
  1. Install dependencies: This project uses pyproject.toml for dependency management. Install setuptools and then the project in editable mode.
    uv pip install -e .
    
    This will install fastmcp and any other dependencies specified in pyproject.toml.

Running the NebulaBlock API MCP Server

To start the NebulaBlock API MCP server:

uv run -m src.main

You should see output similar to: [05/29/25 17:32:58] INFO Starting MCP server 'FastMCP' with transport 'stdio'

Configuring API Key

The NebulaBlock API key can be configured in two ways:

  1. Using the --api-key command-line argument: You can provide the API key directly when running the application:

    python -m src.main --api-key your_nebula_block_api_key
    

    This method will override any API key set in the .env file.

  2. Using a .env file: Create a file named .env in the root directory of the project and add your API key to it:

    NEBULA_BLOCK_API_KEY=your_nebula_block_api_key
    

    The application will automatically load the API key from this file if the --api-key argument is not provided.

Running Tests

To run the unit tests, ensure your virtual environment is activated and pytest is installed (it will be installed with pip install -e .):

pytest

You should see output indicating that the tests passed.

Integrating with an MCP Client

To utilize the NebulaBlock API MCP server, you need to configure your MCP client (e.g., VS Code with an MCP extension) to connect to this server. Below is an example configuration for a settings.json file:

{
  "mcpServers": {
    "nebula": {
      "command": "~/path/to/uv",
      "args": [
        "--directory",
        "~/path/to/nebulablock_mcp",
        "run",
        "-m",
        "src.main",
        "--api-key=YOUR_API_KEY"
      ]
    }
  }
}
  • Replace ~/path/to/uv with the actual path to your uv executable.
  • Replace ~/path/to/nebulablock_mcp with the actual path to your project directory.
  • Replace YOUR_API_KEY with your actual NebulaBlock API key.

License

This project is licensed under the MIT License. See the LICENSE file (if created) for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选