Neo4j GraphRAG MCP Server
An MCP server that enables LLMs to perform semantic and fulltext searches within Neo4j while executing complex, search-augmented Cypher queries for GraphRAG applications. It provides tools for database schema discovery and supports multi-provider embeddings to facilitate advanced graph traversals.
README
Neo4j GraphRAG MCP Server
An MCP server that extends Neo4j with vector search, fulltext search, and search-augmented Cypher queries for GraphRAG applications.
Inspired by the Neo4j Labs
mcp-neo4j-cypherserver. This server adds vector search, fulltext search, and the innovativesearch_cypher_querytool for combining search with graph traversal.
Overview
This server enables LLMs to:
- 🔍 Search Neo4j vector indexes using semantic similarity
- 📝 Search fulltext indexes with Lucene syntax
- ⚡ Combine search with Cypher queries via
search_cypher_query - 🕸️ Execute read-only Cypher queries
Built on LiteLLM for multi-provider embedding support (OpenAI, Azure, Bedrock, Cohere, etc.).
Related: For the official Neo4j MCP Server, see neo4j/mcp. For Neo4j Labs MCP Servers (Cypher, Memory, Data Modeling), see neo4j-contrib/mcp-neo4j.
Installation
# Using pip
pip install mcp-neo4j-graphrag
# Using uv (recommended)
uv pip install mcp-neo4j-graphrag
Configuration
Claude Desktop
Edit the configuration file:
- macOS/Linux:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"neo4j-graphrag": {
"command": "uvx",
"args": ["mcp-neo4j-graphrag"],
"env": {
"NEO4J_URI": "neo4j+s://demo.neo4jlabs.com",
"NEO4J_USERNAME": "recommendations",
"NEO4J_PASSWORD": "recommendations",
"NEO4J_DATABASE": "recommendations",
"OPENAI_API_KEY": "sk-...",
"EMBEDDING_MODEL": "text-embedding-ada-002"
}
}
}
}
Note:
uvxautomatically downloads and runs the package from PyPI. No local installation needed!
Cursor
Edit ~/.cursor/mcp.json or .cursor/mcp.json in your project. Use the same configuration as above.
Reload Configuration
- Claude Desktop: Quit and restart the application
- Cursor: Reload the window (Cmd/Ctrl + Shift + P → "Reload Window")
Tools
get_neo4j_schema_and_indexes
Discover the graph schema, vector indexes, and fulltext indexes.
💡 The agent should automatically call this tool first before using other tools to understand the schema and indexes of the database.
Example prompt:
"What is inside the database?"
vector_search
Semantic similarity search using embeddings.
Parameters: text_query, vector_index, top_k, return_properties
Example prompt:
"What movies are about artificial intelligence?"
fulltext_search
Keyword search with Lucene syntax (AND, OR, wildcards, fuzzy).
Parameters: text_query, fulltext_index, top_k, return_properties
Example prompt:
"find people named Tom"
read_neo4j_cypher
Execute read-only Cypher queries.
Parameters: query, params
Example prompt:
"Show me all genres and how many movies are in each"
search_cypher_query
Combine vector/fulltext search with Cypher queries. Use $vector_embedding and $fulltext_text placeholders.
Parameters: cypher_query, vector_query, fulltext_query, params
Example prompt:
"In one query, what are the directors and genres of the movies about 'time travel adventure' "
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
NEO4J_URI |
Yes | bolt://localhost:7687 |
Neo4j connection URI |
NEO4J_USERNAME |
Yes | neo4j |
Neo4j username |
NEO4J_PASSWORD |
Yes | password |
Neo4j password |
NEO4J_DATABASE |
No | neo4j |
Database name |
EMBEDDING_MODEL |
No | text-embedding-3-small |
Embedding model (see below) |
Embedding Providers
Set EMBEDDING_MODEL and the corresponding API key:
| Provider | Model Format | API Key Variable |
|---|---|---|
| OpenAI | text-embedding-ada-002 |
OPENAI_API_KEY |
| Azure | azure/deployment-name |
AZURE_API_KEY, AZURE_API_BASE |
| Bedrock | bedrock/amazon.titan-embed-text-v1 |
AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY |
| Cohere | cohere/embed-english-v3.0 |
COHERE_API_KEY |
| Ollama | ollama/nomic-embed-text |
(none - local) |
Advanced Topics
See docs/ADVANCED.md for:
- Comparison with Neo4j Labs
mcp-neo4j-cypherserver - Production features (output sanitization, token limits)
- Detailed tool documentation
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。