Neo4j GraphRAG MCP Server

Neo4j GraphRAG MCP Server

An MCP server that enables LLMs to perform semantic and fulltext searches within Neo4j while executing complex, search-augmented Cypher queries for GraphRAG applications. It provides tools for database schema discovery and supports multi-provider embeddings to facilitate advanced graph traversals.

Category
访问服务器

README

Neo4j GraphRAG MCP Server

PyPI version Python 3.10+ License: MIT

An MCP server that extends Neo4j with vector search, fulltext search, and search-augmented Cypher queries for GraphRAG applications.

Inspired by the Neo4j Labs mcp-neo4j-cypher server. This server adds vector search, fulltext search, and the innovative search_cypher_query tool for combining search with graph traversal.

Overview

This server enables LLMs to:

  • 🔍 Search Neo4j vector indexes using semantic similarity
  • 📝 Search fulltext indexes with Lucene syntax
  • ⚡ Combine search with Cypher queries via search_cypher_query
  • 🕸️ Execute read-only Cypher queries

Built on LiteLLM for multi-provider embedding support (OpenAI, Azure, Bedrock, Cohere, etc.).

Related: For the official Neo4j MCP Server, see neo4j/mcp. For Neo4j Labs MCP Servers (Cypher, Memory, Data Modeling), see neo4j-contrib/mcp-neo4j.

Installation

# Using pip
pip install mcp-neo4j-graphrag

# Using uv (recommended)
uv pip install mcp-neo4j-graphrag

Configuration

Claude Desktop

Edit the configuration file:

  • macOS/Linux: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
{
  "mcpServers": {
    "neo4j-graphrag": {
      "command": "uvx",
      "args": ["mcp-neo4j-graphrag"],
      "env": {
        "NEO4J_URI": "neo4j+s://demo.neo4jlabs.com",
        "NEO4J_USERNAME": "recommendations",
        "NEO4J_PASSWORD": "recommendations",
        "NEO4J_DATABASE": "recommendations",
        "OPENAI_API_KEY": "sk-...",
        "EMBEDDING_MODEL": "text-embedding-ada-002"
      }
    }
  }
}

Note: uvx automatically downloads and runs the package from PyPI. No local installation needed!

Cursor

Edit ~/.cursor/mcp.json or .cursor/mcp.json in your project. Use the same configuration as above.

Reload Configuration

  • Claude Desktop: Quit and restart the application
  • Cursor: Reload the window (Cmd/Ctrl + Shift + P → "Reload Window")

Tools

get_neo4j_schema_and_indexes

Discover the graph schema, vector indexes, and fulltext indexes.

💡 The agent should automatically call this tool first before using other tools to understand the schema and indexes of the database.

Example prompt:

"What is inside the database?"

vector_search

Semantic similarity search using embeddings.

Parameters: text_query, vector_index, top_k, return_properties

Example prompt:

"What movies are about artificial intelligence?"

fulltext_search

Keyword search with Lucene syntax (AND, OR, wildcards, fuzzy).

Parameters: text_query, fulltext_index, top_k, return_properties

Example prompt:

"find people named Tom"

read_neo4j_cypher

Execute read-only Cypher queries.

Parameters: query, params

Example prompt:

"Show me all genres and how many movies are in each"

search_cypher_query

Combine vector/fulltext search with Cypher queries. Use $vector_embedding and $fulltext_text placeholders.

Parameters: cypher_query, vector_query, fulltext_query, params

Example prompt:

"In one query, what are the directors and genres of the movies about 'time travel adventure' "

Environment Variables

Variable Required Default Description
NEO4J_URI Yes bolt://localhost:7687 Neo4j connection URI
NEO4J_USERNAME Yes neo4j Neo4j username
NEO4J_PASSWORD Yes password Neo4j password
NEO4J_DATABASE No neo4j Database name
EMBEDDING_MODEL No text-embedding-3-small Embedding model (see below)

Embedding Providers

Set EMBEDDING_MODEL and the corresponding API key:

Provider Model Format API Key Variable
OpenAI text-embedding-ada-002 OPENAI_API_KEY
Azure azure/deployment-name AZURE_API_KEY, AZURE_API_BASE
Bedrock bedrock/amazon.titan-embed-text-v1 AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY
Cohere cohere/embed-english-v3.0 COHERE_API_KEY
Ollama ollama/nomic-embed-text (none - local)

Advanced Topics

See docs/ADVANCED.md for:

  • Comparison with Neo4j Labs mcp-neo4j-cypher server
  • Production features (output sanitization, token limits)
  • Detailed tool documentation

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选