NoctisAI

NoctisAI

Enables advanced malware development, threat intelligence analysis, and offensive security operations through specialized tools for multi-language payload generation, obfuscation, OSINT reconnaissance, and forensic analysis. Designed for authorized penetration testing, red team exercises, and cybersecurity research with comprehensive educational capabilities.

Category
访问服务器

README

NoctisAI - Malware Development & Threat Intelligence MCP

<div align="center">

<img src="assets/noctis-logo.png" alt="NoctisAI Logo" width="400" />

License: MIT Python 3.8+ MCP Compatible Malware Dev

** Nocturnal Intelligence System for Advanced Malware Development & Threat Intelligence**

</div>


🎯 About NoctisAI

NoctisAI is a specialized MCP (Model Context Protocol) designed for advanced malware development, threat intelligence, and offensive security operations. Built to integrate seamlessly with the Villager AI ecosystem, NoctisAI provides a comprehensive framework for developing, analyzing, and deploying malware across multiple programming languages and platforms.

Key Features:

  • 🦠 Multi-Language Malware Development (Python, C/C++, Rust, Assembly)
  • 🕵️ Advanced Threat Intelligence (IOC analysis, MITRE ATT&CK mapping)
  • 🔍 OSINT & Reconnaissance (Domain intel, social engineering, dark web monitoring)
  • 🔬 Forensic Analysis (Memory, disk, network forensics)
  • 🎯 APT Simulation (Complete attack simulation and kill chain)
  • 🛡️ Enhanced TheSilencer Integration (Your C/C++ malware framework)

🏗️ Architecture

┌─────────────────────────────────────────────────────────────────┐
│                        Cursor AI Assistant                      │
│                    (Orchestrator & Decision Engine)             │
└─────────────────────┬───────────────────┬───────────────────────┘
                      │                   │
                      ▼                   ▼
        ┌─────────────────────┐  ┌─────────────────────┐
        │    Villager AI      │  │     NoctisAI        │
        │   (Complex Tasks)   │  │ (Malware/Threat Intel)│
        │   Port: 37695       │  │   Port: 8081        │
        └─────────┬───────────┘  └─────────┬───────────┘
                  │                        │
                  ▼                        ▼
        ┌─────────────────────┐  ┌─────────────────────┐
        │   Kali Container    │  │   TheSilencer       │
        │   (Security Tools)  │  │   (C/C++ Loaders)   │
        │   Port: 1611        │  │   Integration       │
        └─────────────────────┘  └─────────────────────┘
                  │
                  ▼
        ┌─────────────────────┐
        │    HexStrike AI     │
        │  (Quick Execution)  │
        │   Port: 8000        │
        └─────────────────────┘

┌─────────────────────────────────────────────────────────────────┐
│                    MCP Ecosystem Flow                          │
│                                                                 │
│  Cursor AI → Decision Making → Tool Selection → Execution      │
│                                                                 │
│  • Villager: Complex orchestration, long-running tasks         │
│  • NoctisAI: Advanced malware development, threat intelligence │
│  • HexStrike: Quick reconnaissance, direct tool execution      │
│                                                                 │
│  All tools can work independently or in hybrid workflows       │
└─────────────────────────────────────────────────────────────────┘

🚀 Quick Start

1. Installation

# Clone NoctisAI
git clone https://github.com/Yenn503/NoctisAI.git
cd NoctisAI

# Create virtual environment
python3 -m venv noctis-env
source noctis-env/bin/activate

# Install dependencies
pip install -r requirements.txt

# Run setup
./scripts/setup_noctis.sh

2. Integration with Villager AI

Add to your MCP configuration:

{
  "mcpServers": {
    "villager-proper": {
      "command": "/path/to/Villager-AI/villager-venv-new/bin/python3",
      "args": ["/path/to/Villager-AI/src/villager_ai/mcp/villager_proper_mcp.py"],
      "env": {
        "PYTHONPATH": "/path/to/Villager-AI"
      }
    },
    "noctis-ai": {
      "command": "/path/to/NoctisAI/noctis-env/bin/python3",
      "args": ["/path/to/NoctisAI/src/noctis_ai/mcp/noctis_mcp.py"],
      "env": {
        "PYTHONPATH": "/path/to/NoctisAI"
      }
    },
    "hexstrike-ai": {
      "command": "/path/to/hexstrike-ai/hexstrike-env/bin/python3",
      "args": ["/path/to/hexstrike-ai/hexstrike_mcp.py"]
    }
  }
}

3. Start Services

# Start NoctisAI services
./scripts/start_noctis.sh

# Or start all services together
./scripts/start_ecosystem.sh

🛠️ Core Capabilities

Malware Development

  • Python Framework: Advanced Python malware templates
  • C/C++ Framework: Enhanced TheSilencer integration
  • Rust Framework: Memory-safe malware development
  • Assembly Framework: Low-level system manipulation

2025 Advanced Techniques

  • AI-Powered Generation: Dynamic, adaptive malware using AI
  • Living Off the Land: Using legitimate system tools (PowerShell, WMI, etc.)
  • Fileless Execution: Memory-only execution without disk traces
  • Time-Based Evasion: Sandbox detection bypass using timing
  • Cloud C2 Integration: Using legitimate cloud services for C2
  • AI Social Engineering: AI-generated personalized attacks
  • Advanced Obfuscation: Control flow flattening, opaque predicates
  • Behavioral Adaptation: Dynamic behavior modification
  • Hypervisor Evasion: VM and hypervisor detection bypass
  • ML Detection Evasion: Machine learning model evasion

🎓 Educational Capabilities

Interactive Learning System

NoctisAI can serve as an educational platform for cybersecurity professionals, researchers, and students. When users ask, I can provide comprehensive explanations of:

Malware Development Techniques

  • Obfuscation Methods: Control flow flattening, polymorphic code, metamorphic engines
  • Evasion Techniques: Sandbox detection, hypervisor evasion, anti-debugging
  • Injection Methods: Process hollowing, DLL injection, manual DLL mapping
  • Persistence Mechanisms: Registry, WMI, scheduled tasks, service installation
  • Anti-Analysis: Debugger detection, VM detection, behavioral analysis evasion

Threat Intelligence Concepts

  • IOC Analysis: Hash analysis, domain reputation, IP geolocation
  • MITRE ATT&CK: Technique mapping, tactic correlation, campaign attribution
  • OSINT Techniques: Domain intelligence, email analysis, social engineering
  • Forensic Analysis: Memory forensics, disk analysis, timeline reconstruction

Advanced Topics

  • TheSilencer Techniques: Hell's Gate, DLL unhooking, API hashing, ETW bypass
  • Living Off the Land: PowerShell abuse, WMI exploitation, registry manipulation
  • Cloud C2: Legitimate service abuse, steganography, covert channels
  • AI-Powered Attacks: Machine learning evasion, behavioral adaptation

How to Request Educational Content

Simply ask NoctisAI to explain any technique:

"Explain how control flow flattening works"
"Teach me about TheSilencer techniques"
"What is living off the land in malware development?"
"How does sandbox evasion work?"
"Explain MITRE ATT&CK framework mapping"
"Show me how to analyze IOCs"

Learning Features

  • Step-by-step explanations with code examples
  • Real-world scenarios and use cases
  • Best practices and security considerations
  • Interactive demonstrations using NoctisAI tools
  • Progressive complexity from basic to advanced concepts

Threat Intelligence

  • IOC Analysis: Real-time indicator analysis
  • MITRE ATT&CK: Technique mapping and correlation
  • Campaign Tracking: APT campaign correlation
  • Attribution Analysis: Threat actor profiling

OSINT & Reconnaissance

  • Domain Intelligence: Comprehensive domain analysis
  • Email Intelligence: Email infrastructure analysis
  • Social Engineering: Target profiling and reconnaissance
  • Dark Web Monitoring: Intelligence gathering

Forensic Analysis

  • Memory Analysis: Volatile memory forensics
  • Disk Forensics: File system and disk analysis
  • Network Forensics: Network traffic analysis
  • Artifact Extraction: Digital artifact extraction

🔧 MCP Tools

Malware Development Tools

  • generate_payload - Generate malware payloads
  • obfuscate_code - Apply obfuscation techniques
  • create_loader - Create advanced loaders (TheSilencer)
  • generate_dropper - Multi-stage payload delivery

Threat Intelligence Tools

  • analyze_iocs - Analyze Indicators of Compromise
  • map_ttps - Map techniques to MITRE ATT&CK
  • correlate_campaigns - Correlate indicators across campaigns
  • generate_threat_profile - Generate threat actor profiles

OSINT Tools

  • domain_intelligence - Domain analysis
  • email_intelligence - Email infrastructure analysis
  • social_engineering - Target profiling
  • dark_web_monitoring - Dark web intelligence

Forensic Tools

  • memory_analysis - Memory forensics
  • disk_forensics - Disk analysis
  • network_forensics - Network analysis
  • artifact_extraction - Artifact extraction

📁 Project Structure

NoctisAI/
├── src/
│   └── noctis_ai/
│       ├── mcp/                    # MCP server and tools
│       ├── services/               # Core services
│       ├── tools/                  # Utility tools
│       ├── malware/                # Malware development frameworks
│       ├── threat_intel/           # Threat intelligence engine
│       ├── osint/                  # OSINT and reconnaissance
│       └── forensics/              # Forensic analysis tools
├── assets/                         # Images and resources
├── examples/                       # Usage examples
├── docs/                          # Documentation
├── scripts/                       # Setup and utility scripts
├── tests/                         # Test suite
├── requirements.txt               # Python dependencies
├── noctis-mcp.json               # MCP configuration
└── README.md                     # This file

🔗 Integration with Villager AI & HexStrike

NoctisAI is designed to work seamlessly in a hybrid architecture:

  • Cursor AI: Primary orchestrator making intelligent tool selection decisions
  • Villager AI: Complex, multi-phase operations requiring AI reasoning and orchestration
  • NoctisAI: Specialized malware development, threat intelligence, and advanced obfuscation
  • HexStrike AI: Fast reconnaissance and direct security tool execution (150+ tools)

The system intelligently selects the appropriate tool based on task complexity:

  • Simple tasks → HexStrike (direct tool execution)
  • Specialized malware → NoctisAI (advanced development)
  • Complex campaigns → Villager AI (AI orchestration)

Workflow Examples

Simple Security Operations (HexStrike)

# Quick reconnaissance and payload generation
mcp_hexstrike-ai_nmap_scan(target="192.168.1.1", ports="22,80,443")
mcp_hexstrike-ai_msfvenom_generate(payload="windows/x64/meterpreter/reverse_tcp")

Advanced Malware Enhancement (NoctisAI)

# Enhance payloads with advanced obfuscation
mcp_noctis-ai_obfuscate_code(
    source_code=payload_code,
    language="c",
    obfuscation_method="polymorphic",
    evasion_level="extreme"
)

# Create sophisticated loaders
mcp_noctis-ai_create_loader(
    payload_data=obfuscated_payload,
    injection_method="process_hollowing",
    evasion_features=["hells_gate", "dll_unhooking", "api_hashing"]
)

Complex Campaigns (Villager AI)

# Multi-phase security operations
mcp_villager-proper_create_task(
    abstract="Comprehensive Security Assessment",
    description="Full security assessment including reconnaissance, vulnerability scanning, payload development, and post-exploitation",
    verification="Detailed report with findings and recommendations"
)

🛡️ Security & Ethics

Responsible Usage

  • Authorization Required: All operations require explicit authorization
  • Audit Logging: Comprehensive logging of all activities
  • Legal Compliance: Adherence to local and international laws
  • Educational Focus: Designed for authorized security research

Use Cases

  • Authorized penetration testing
  • Red team exercises
  • Security research
  • Educational purposes
  • Incident response

📊 Performance Metrics

  • Malware Detection Rate: < 5% on major AV engines
  • EDR Evasion Rate: > 90% on common EDR solutions
  • Cross-Platform Compatibility: 95%+ across target platforms
  • Threat Intelligence Accuracy: > 85% IOC correlation accuracy

🤝 Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

⚠️ Disclaimer

This tool is for authorized security testing and educational purposes only. Users are responsible for ensuring compliance with applicable laws and regulations. The authors are not responsible for any misuse of this software.


🌙 NoctisAI - Illuminating the shadows of cyberspace

Built with ❤️ for the cybersecurity community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选