Noctua MCP Server
Enables editing and querying of Gene Ontology Causal Activity Models (GO-CAMs) through the Barista API. Supports model creation, individual and fact management, evidence addition, and causal pathway construction for biological knowledge representation.
README
noctua-mcp
MCP server for GO-CAM model editing via the Barista API.
This package provides a thin MCP (Model Context Protocol) wrapper around the noctua-py library, exposing GO-CAM editing capabilities through a standardized interface.
Quick Start
Once published:
uvx noctua-mcp
For development:
uv run noctua-mcp serve
Using with Claude Code
-
Configure the MCP server: The project includes a
.mcp.jsonconfiguration file that tells Claude Code how to run the server. -
Set your Barista token: You'll need to set the
BARISTA_TOKENenvironment variable before starting Claude Code:export BARISTA_TOKEN="your-barista-token-here" claude-code /path/to/noctua-mcp -
Verify the connection: Once Claude Code starts, the MCP server will be available. You can ask Claude to use the Noctua tools to interact with GO-CAM models.
The .mcp.json configuration is already set up to:
- Run the server using
uv run noctua-mcp - Pass through the
BARISTA_TOKENenvironment variable - Configure the default Barista endpoints
Environment Variables
BARISTA_TOKEN(required) – Barista API token for privileged operationsBARISTA_BASE(default: http://barista-dev.berkeleybop.org) – Barista server URLBARISTA_NAMESPACE(default: minerva_public_dev) – Minerva namespaceBARISTA_PROVIDED_BY(default: http://geneontology.org) – Provider identifier
Available Tools
Model Editing
add_individual(model_id, class_curie, assign_var)– Add an instance of a GO/ECO termadd_fact(model_id, subject_id, object_id, predicate_id)– Add a relation between individualsadd_evidence_to_fact(model_id, subject_id, object_id, predicate_id, eco_id, sources, with_from)– Add evidence to a factremove_individual(model_id, individual_id)– Remove an individualremove_fact(model_id, subject_id, object_id, predicate_id)– Remove a fact
Model Patterns
add_basic_pathway(model_id, pathway_curie, mf_curie, gene_product_curie, cc_curie)– Add a basic GO-CAM unitadd_causal_chain(model_id, mf1_curie, mf2_curie, gp1_curie, gp2_curie, causal_relation)– Add causally linked activities
Model Query
get_model(model_id)– Retrieve full model JSONmodel_summary(model_id)– Get model statistics and summary
Configuration
configure_token(token)– Set Barista token at runtime (not echoed)
Architecture
This server is designed as a thin shim layer:
MCP Client (e.g., Claude)
↓
noctua-mcp (this package)
↓
noctua-py library
↓
Barista API / Noctua
All core logic resides in the noctua-py library. This MCP server only:
- Exposes noctua-py functionality through MCP tools
- Manages client singleton
- Provides prompts for common patterns
Testing
The package includes comprehensive tests:
# Run all tests
uv run pytest
# Run unit tests only
uv run pytest tests/test_unit.py
# Run MCP integration tests
uv run pytest tests/test_mcp.py
# Run with coverage
uv run pytest --cov=noctua_mcp --cov-report=term-missing
Tests are divided into:
- Unit tests (
test_unit.py): Direct function testing with mocks - MCP tests (
test_mcp.py): Server startup and tool invocation via FastMCP client - Live tests: Optional tests that require
BARISTA_TOKENand network access
Development
# Install dependencies including noctua-py from local path
uv sync
# Run the server
uv run noctua-mcp serve
# Run tests
uv run pytest
# Type checking
uv run mypy src/
# Linting
uv run ruff check src/
Protocol Overview
This project implements an MCP server using FastMCP. MCP (Model Context Protocol) standardizes how tools/resources are exposed to LLMs and agent clients.
Useful links:
Best Practices
- stdio transport by default with single entry point
- Rich docstrings for all tools (parameters, returns, examples)
- No secrets echoed in outputs (Barista token handled securely)
- Comprehensive async testing using fastmcp.Client
- Thin wrapper pattern - core logic in upstream library
Credits
This project uses the monarch-project-copier template.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。