Noctua MCP Server

Noctua MCP Server

Enables editing and querying of Gene Ontology Causal Activity Models (GO-CAMs) through the Barista API. Supports model creation, individual and fact management, evidence addition, and causal pathway construction for biological knowledge representation.

Category
访问服务器

README

noctua-mcp

MCP server for GO-CAM model editing via the Barista API.

This package provides a thin MCP (Model Context Protocol) wrapper around the noctua-py library, exposing GO-CAM editing capabilities through a standardized interface.

Quick Start

Once published:

uvx noctua-mcp

For development:

uv run noctua-mcp serve

Using with Claude Code

  1. Configure the MCP server: The project includes a .mcp.json configuration file that tells Claude Code how to run the server.

  2. Set your Barista token: You'll need to set the BARISTA_TOKEN environment variable before starting Claude Code:

    export BARISTA_TOKEN="your-barista-token-here"
    claude-code /path/to/noctua-mcp
    
  3. Verify the connection: Once Claude Code starts, the MCP server will be available. You can ask Claude to use the Noctua tools to interact with GO-CAM models.

The .mcp.json configuration is already set up to:

  • Run the server using uv run noctua-mcp
  • Pass through the BARISTA_TOKEN environment variable
  • Configure the default Barista endpoints

Environment Variables

  • BARISTA_TOKEN (required) – Barista API token for privileged operations
  • BARISTA_BASE (default: http://barista-dev.berkeleybop.org) – Barista server URL
  • BARISTA_NAMESPACE (default: minerva_public_dev) – Minerva namespace
  • BARISTA_PROVIDED_BY (default: http://geneontology.org) – Provider identifier

Available Tools

Model Editing

  • add_individual(model_id, class_curie, assign_var) – Add an instance of a GO/ECO term
  • add_fact(model_id, subject_id, object_id, predicate_id) – Add a relation between individuals
  • add_evidence_to_fact(model_id, subject_id, object_id, predicate_id, eco_id, sources, with_from) – Add evidence to a fact
  • remove_individual(model_id, individual_id) – Remove an individual
  • remove_fact(model_id, subject_id, object_id, predicate_id) – Remove a fact

Model Patterns

  • add_basic_pathway(model_id, pathway_curie, mf_curie, gene_product_curie, cc_curie) – Add a basic GO-CAM unit
  • add_causal_chain(model_id, mf1_curie, mf2_curie, gp1_curie, gp2_curie, causal_relation) – Add causally linked activities

Model Query

  • get_model(model_id) – Retrieve full model JSON
  • model_summary(model_id) – Get model statistics and summary

Configuration

  • configure_token(token) – Set Barista token at runtime (not echoed)

Architecture

This server is designed as a thin shim layer:

MCP Client (e.g., Claude)
    ↓
noctua-mcp (this package)
    ↓
noctua-py library
    ↓
Barista API / Noctua

All core logic resides in the noctua-py library. This MCP server only:

  1. Exposes noctua-py functionality through MCP tools
  2. Manages client singleton
  3. Provides prompts for common patterns

Testing

The package includes comprehensive tests:

# Run all tests
uv run pytest

# Run unit tests only
uv run pytest tests/test_unit.py

# Run MCP integration tests
uv run pytest tests/test_mcp.py

# Run with coverage
uv run pytest --cov=noctua_mcp --cov-report=term-missing

Tests are divided into:

  • Unit tests (test_unit.py): Direct function testing with mocks
  • MCP tests (test_mcp.py): Server startup and tool invocation via FastMCP client
  • Live tests: Optional tests that require BARISTA_TOKEN and network access

Development

# Install dependencies including noctua-py from local path
uv sync

# Run the server
uv run noctua-mcp serve

# Run tests
uv run pytest

# Type checking
uv run mypy src/

# Linting
uv run ruff check src/

Protocol Overview

This project implements an MCP server using FastMCP. MCP (Model Context Protocol) standardizes how tools/resources are exposed to LLMs and agent clients.

Useful links:

Best Practices

  • stdio transport by default with single entry point
  • Rich docstrings for all tools (parameters, returns, examples)
  • No secrets echoed in outputs (Barista token handled securely)
  • Comprehensive async testing using fastmcp.Client
  • Thin wrapper pattern - core logic in upstream library

Credits

This project uses the monarch-project-copier template.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选