Notes MCP Server
Enables creating, managing, and searching Markdown notes with support for tags, timestamps, and full-text search. Includes AI prompts for analyzing and summarizing notes.
README
📝 Notes MCP Server
A Model Context Protocol (MCP) server for managing notes in Markdown format. Built with Python and the FastMCP SDK.
🌟 Features
- Create Notes: Create new Markdown notes with titles, content, and tags
- List & Filter: View all notes or filter by specific tags
- Search: Full-text search across all notes with context preview
- Update: Append content to existing notes with timestamps
- Delete: Remove notes when no longer needed
- Resources: Access all notes as a single MCP resource
- AI Prompts: Built-in prompt for analyzing and summarizing notes
📦 Installation
Prerequisites
- Python 3.10 or higher
- uv package manager
Install uv
# MacOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# Or via pip
pip install uv
Install Dependencies
# Using uv (recommended)
uv pip install mcp
# Or using pip
pip install mcp
🚀 Quick Start
1. Save the Server
Save notes_server.py in your desired directory.
2. Run the Server
# Using uv (recommended)
uv run notes_server.py
# Or using python directly
python notes_server.py
3. Configure in Claude Desktop
Add to your claude_desktop_config.json:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"notes": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/notes-mcp-server",
"run",
"notes_server.py"
]
}
}
}
Alternative with Python:
{
"mcpServers": {
"notes": {
"command": "python",
"args": ["/absolute/path/to/notes_server.py"]
}
}
}
4. Restart Claude Desktop
After adding the configuration, restart Claude Desktop to load the MCP server.
🛠️ Available Tools
create_note
Create a new note with title, content, and optional tags.
Parameters:
title(string): Note titlecontent(string): Note content in Markdowntags(string, optional): Comma-separated tags
Example:
Create a note titled "Project Ideas" with content "1. Build MCP server\n2. Add search" and tags "work, ideas"
list_notes
List all notes with their titles and creation dates.
Parameters:
tag(string, optional): Filter by specific tag
Example:
List all notes
List notes with tag "work"
read_note
Read the full content of a specific note.
Parameters:
filename(string): The filename of the note (e.g.,20241106_120000_project_ideas.md)
Example:
Read note "20241106_120000_project_ideas.md"
search_notes
Search for notes containing specific text.
Parameters:
query(string): Search query
Example:
Search notes for "Python"
update_note
Append content to an existing note with timestamp.
Parameters:
filename(string): The filename of the notecontent(string): Content to append
Example:
Update note "20241106_120000_project_ideas.md" with "3. Implement testing"
delete_note
Delete a note permanently.
Parameters:
filename(string): The filename of the note
Example:
Delete note "20241106_120000_old_note.md"
📚 Resources
notes://all
Access all notes as a combined resource. Useful for context-aware operations.
💡 Prompts
summarize_notes_prompt
Generates a prompt for AI to analyze all notes and provide:
- Summary of main themes
- Recurring ideas or patterns
- Important action items
- Recommendations for organization
📁 File Structure
Notes are stored in the notes/ directory with the following format:
notes/
├── 20241106_120000_project_ideas.md
├── 20241106_130000_shopping_list.md
└── 20241106_140000_python_notes.md
Note Format
Each note is a Markdown file with metadata:
# Project Ideas
**Created:** 2024-11-06 12:00:00
**Tags:** work, ideas
---
1. Build MCP server
2. Add search functionality
3. Implement testing
🧪 Testing
A test script is included to verify functionality without connecting to an LLM:
python test_notes_server.py
The test script will:
- Create sample notes
- List and filter notes
- Search for content
- Update and delete notes
- Test all features
🔧 Configuration
Notes Directory
By default, notes are stored in ./notes/. To change the location, modify the NOTES_DIR variable in notes_server.py:
NOTES_DIR = os.path.join(os.path.dirname(__file__), "notes")
Filename Generation
Notes are saved with timestamps and sanitized titles:
- Format:
YYYYMMDD_HHMMSS_sanitized_title.md - Max title length: 100 characters
- Special characters are removed
- Spaces converted to underscores
📝 Usage Examples
Create a Note
"Create a note titled 'Meeting Notes' with content 'Discussed Q4 goals' and tags 'work, meetings'"
Find Related Notes
"Search my notes for anything related to 'Python'"
Review Notes by Category
"List all notes tagged with 'personal'"
Summarize Notes
"Use the summarize_notes_prompt to analyze all my notes"
🤝 Contributing
Contributions are welcome! Feel free to:
- Report bugs
- Suggest new features
- Submit pull requests
📄 License
This project is open source and available under the MIT License.
🔗 Resources
⚠️ Limitations
- Text-based notes only (no file attachments)
- No note encryption
- Single notes directory (no subdirectories)
- UTF-8 encoding only
💬 Support
For issues or questions:
- Check the test script output for debugging
- Review the notes directory permissions
- Ensure Python 3.10+ is installed
- Verify MCP SDK installation
Made with ❤️ using FastMCP
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。