Ollama MCP Server

Ollama MCP Server

A bridge that integrates Ollama's local LLM capabilities into MCP-powered applications, enabling users to run, manage, and interact with AI models locally with full control and privacy.

Category
访问服务器

README

Ollama MCP Server

This is a rebooted and actively maintained fork.
Original project: NightTrek/Ollama-mcp

This repository (hyzhak/ollama-mcp-server) is a fresh upstream with improved maintenance, metadata, and publishing automation.

See NightTrek/Ollama-mcp for project history and prior releases.

🚀 A powerful bridge between Ollama and the Model Context Protocol (MCP), enabling seamless integration of Ollama's local LLM capabilities into your MCP-powered applications.

🌟 Features

Complete Ollama Integration

  • Full API Coverage: Access all essential Ollama functionality through a clean MCP interface
  • OpenAI-Compatible Chat: Drop-in replacement for OpenAI's chat completion API
  • Local LLM Power: Run AI models locally with full control and privacy

Core Capabilities

  • 🔄 Model Management

    • Pull models from registries
    • Push models to registries
    • List available models
    • Create custom models from Modelfiles
    • Copy and remove models
  • 🤖 Model Execution

    • Run models with customizable prompts (response is returned only after completion; streaming is not supported in stdio mode)
    • Vision/multimodal support: pass images to compatible models
    • Chat completion API with system/user/assistant roles
    • Configurable parameters (temperature, timeout)
    • NEW: think parameter for advanced reasoning and transparency (see below)
    • Raw mode support for direct responses
  • 🛠 Server Control

    • Start and manage Ollama server
    • View detailed model information
    • Error handling and timeout management

🚀 Quick Start

Prerequisites

  • Ollama installed on your system
  • Node.js (with npx, included with npm)

Configuration

Add the server to your MCP configuration:

For Claude Desktop:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "ollama": {
      "command": "npx",
      "args": ["ollama-mcp-server"],
      "env": {
        "OLLAMA_HOST": "http://127.0.0.1:11434"  // Optional: customize Ollama API endpoint
      }
    }
  }
}

🛠 Developer Setup

Prerequisites

  • Ollama installed on your system
  • Node.js and npm

Installation

  1. Install dependencies:
npm install
  1. Build the server:
npm run build

🛠 Usage Examples

Pull and Run a Model

// Pull a model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "pull",
  arguments: {
    name: "llama2"
  }
});

// Run the model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "run",
  arguments: {
    name: "llama2",
    prompt: "Explain quantum computing in simple terms"
  }
});

Run a Vision/Multimodal Model

// Run a model with an image (for vision/multimodal models)
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "run",
  arguments: {
    name: "gemma3:4b",
    prompt: "Describe the contents of this image.",
    imagePath: "./path/to/image.jpg"
  }
});

Chat Completion (OpenAI-compatible)

await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "chat_completion",
  arguments: {
    model: "llama2",
    messages: [
      {
        role: "system",
        content: "You are a helpful assistant."
      },
      {
        role: "user",
        content: "What is the meaning of life?"
      }
    ],
    temperature: 0.7
  }
});

// Chat with images (for vision/multimodal models)
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "chat_completion",
  arguments: {
    model: "gemma3:4b",
    messages: [
      {
        role: "system",
        content: "You are a helpful assistant."
      },
      {
        role: "user",
        content: "Describe the contents of this image.",
        images: ["./path/to/image.jpg"]
      }
    ]
  }
});

Note: The images field is optional and only supported by vision/multimodal models.

Create Custom Model

await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "create",
  arguments: {
    name: "custom-model",
    modelfile: "./path/to/Modelfile"
  }
});

🧠 Advanced Reasoning with the think Parameter

Both the run and chat_completion tools now support an optional think parameter:

  • think: true: Requests the model to provide step-by-step reasoning or "thought process" in addition to the final answer (if supported by the model).
  • think: false (default): Only the final answer is returned.

Example (run tool):

await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "run",
  arguments: {
    name: "deepseek-r1:32b",
    prompt: "how many r's are in strawberry?",
    think: true
  }
});
  • If the model supports it, the response will include a <think>...</think> block with detailed reasoning before the final answer.

Example (chat_completion tool):

await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "chat_completion",
  arguments: {
    model: "deepseek-r1:32b",
    messages: [
      { role: "user", content: "how many r's are in strawberry?" }
    ],
    think: true
  }
});
  • The model's reasoning (if provided) will be included in the message content.

Note: Not all models support the think parameter. Advanced models (e.g., "deepseek-r1:32b", "magistral") may provide more detailed and accurate reasoning when think is enabled.

🔧 Advanced Configuration

  • OLLAMA_HOST: Configure custom Ollama API endpoint (default: http://127.0.0.1:11434)
  • Timeout settings for model execution (default: 60 seconds)
  • Temperature control for response randomness (0-2 range)

🤝 Contributing

Contributions are welcome! Feel free to:

  • Report bugs
  • Suggest new features
  • Submit pull requests

📝 License

MIT License - feel free to use in your own projects!


Built with ❤️ for the MCP ecosystem

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选