OmniTaskAgent
A multi-model task management system that enables intelligent task creation, decomposition, status tracking, and dependency management through natural language, with support for integration into editors via MCP protocol and connection to various professional task management systems.
README
OmniTaskAgent
A powerful multi-model task management system that can connect to various task management systems and help users choose and use the task management solution that best suits their needs.
Features
- Task Management System: Create, list, update and delete tasks, support status tracking and dependency management
- Task Decomposition and Analysis: Break down complex tasks into subtasks, support complexity assessment and PRD automatic parsing
- Python Native Implementation: Built entirely in Python, seamlessly integrated with the Python ecosystem
- Multi-Model Support: Compatible with multiple models like OpenAI, Claude, etc., not limited to specific API providers
- Editor Integration: Integrate with editors like Cursor through MCP protocol for smooth development experience
- Intelligent Workflow: Implement intelligent task management process based on LangGraph's ReAct pattern
- Multi-System Integration: Can connect to various professional task management systems like mcp-shrimp-task-manager and claude-task-master
- Cross-Scenario Application: Suitable for general development projects, vertical domain projects, and other task systems
Installation
# Install using uv (recommended)
uv pip install -e .
# Or install using pip
pip install -e .
# Install Node.js dependencies (for MCP server)
npm install
Configuration
Create a .env file in the project root directory for configuration:
# Required: API keys (configure at least one)
OPENAI_API_KEY=your_openai_api_key_here
# Or
ANTHROPIC_API_KEY=your_anthropic_api_key_here
# Optional: Model configuration
LLM_MODEL=gpt-4o # Default model
TEMPERATURE=0.2 # Creativity parameter
MAX_TOKENS=4000 # Maximum tokens
Usage
Command Line Interface (Recommended)
The simplest way to use is through the built-in command line interface:
# Start interactive command line interface
python -m omni_task_agent.cli
Common command examples:
Create task: Optimize website performance Reduce page load time by 50%List all tasksUpdate task 1 status to completedDecompose task 2Analyze project complexity
Using in LangGraph Studio
LangGraph Studio is a development environment specifically designed for LLM applications, used for visualizing, interacting with, and debugging complex agent applications.
First, ensure langgraph-cli is installed (requires version 0.1.55 or higher):
# Install langgraph-cli (requires Python 3.11+)
pip install -U "langgraph-cli[inmem]"
Then start the development server in the project root directory (containing langgraph.json):
# Start local development server
langgraph dev
This will automatically open a browser and connect to the cloud-hosted Studio interface, where you can:
- Visualize your agent graph structure
- Test and run agents through the UI interface
- Modify agent state and debug
- Add breakpoints for step-by-step agent execution
- Implement human-machine collaboration processes
When modifying code during development, Studio will update automatically without needing to restart the service, facilitating rapid iteration and debugging.
For advanced features like breakpoint debugging:
# Enable debug port
langgraph dev --debug-port 5678
Editor Integration (MCP Service)
- Run the MCP server:
# Start STDIO-based MCP service
python run_mcp.py
- Configure MCP settings in your editor (like Cursor, VSCode, etc.):
{
"mcpServers": {
"task-master-agent": {
"type": "stdio",
"command": "/path/to/python",
"args": ["/path/to/run_mcp.py"],
"env": {
"OPENAI_API_KEY": "your-key-here"
}
}
}
}
Project Structure
omnitaskagent/
├── omni_task_agent/ # Main code package
│ ├── agent.py # LangGraph agent definition
│ ├── config.py # Configuration management
│ └── cli.py # Command line interface
├── examples/ # Example code
│ └── basic_usage.py # Basic usage example
├── tests/ # Test cases
├── run_mcp.py # MCP service entry
├── adapters.py # MCP adapters
├── langgraph.json # LangGraph API configuration
├── package.json # Node.js dependencies
└── pyproject.toml # Python dependencies
Reference Projects
- mcp-shrimp-task-manager - Task management system implemented in JavaScript
- AutoMCP - Tool for creating MCP services
- LangGraph - Agent building framework
- langchain-mcp-adapters - LangChain MCP adapters
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。