OParl MCP Server

OParl MCP Server

Provides AI models with seamless access to OParl parliamentary data APIs through the Model Context Protocol. Enables natural language queries for parliamentary meetings, documents, organizations, representatives, and other government data across multiple OParl implementations.

Category
访问服务器

README

<div align="center">

OParl MCP Server

<img src="assets/images/oparl-logo.png" alt="OParl Logo" width="120" height="120" style="margin-right: 20px;"> <img src="assets/images/fastmcp-logo.png" alt="FastMCP Logo" width="200" height="80">

A Model Context Protocol (MCP) server for accessing OParl parliamentary data APIs

GitHub stars GitHub forks GitHub issues GitHub license Python 3.11+ MCP Compatible

📚 Documentation🚀 Quick Start🏛️ OParl API🔧 Configuration🐳 Docker

</div>

⚠️ Project Status

This project is currently in development and requires additional validation and testing. While the core functionality is implemented, it has not been thoroughly tested in production environments. Please use with caution and report any issues you encounter.

🎯 Overview

The OParl MCP Server provides AI models and applications with seamless access to OParl parliamentary data APIs through the Model Context Protocol. It enables natural language queries and structured access to parliamentary information systems across multiple implementations.

✨ Features

  • 🔌 MCP Integration: Full Model Context Protocol compliance
  • 🏛️ OParl 1.1 Support: Complete support for all OParl object types
  • 🌐 Multi-Implementation: Works with various OParl implementations
  • 🔐 Authentication: Flexible API key and Bearer token support
  • 📊 Rich Data Access: Parliamentary meetings, documents, organizations, and more
  • 🔍 Advanced Search: Query parameters and filtering capabilities
  • 🐳 Docker Ready: Containerized deployment with Docker Compose
  • 🧪 Comprehensive Testing: Unit tests and integration tests included
  • 📚 Extensive Documentation: Complete API reference and usage guides

🏛️ OParl API

The server provides access to all standard OParl 1.1 object types:

Object Type Description Key Properties
System Root system information oparlVersion, body, created
Body Parliamentary bodies name, shortName, organization
Organization Political parties & groups name, shortName, member
Person Representatives & officials name, givenName, familyName
Meeting Parliamentary sessions name, start, end, location
AgendaItem Meeting topics name, meeting, order
Paper Documents & resolutions name, reference, date
Consultation Public consultations name, paper, start, end
File Attachments & media name, mimeType, accessUrl
Location Meeting venues name, geojson, postalCode

🚀 Quick Start

Prerequisites

  • Python 3.11 or higher
  • pip (Python package manager)

Installation

  1. Clone the repository

    git clone https://github.com/jtwolfe/oparl-mcp-server.git
    cd oparl-mcp-server
    
  2. Create a virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  3. Install dependencies

    pip install -r requirements.txt
    
  4. Run the server

    python -m oparl_mcp.server
    

Development Setup

For development, install additional dependencies:

pip install -r requirements-dev.txt

⚙️ Configuration

The server can be configured using environment variables or programmatically:

Environment Variables

export OPARL_BASE_URL="https://api.oparl.org"
export OPARL_API_KEY="your-api-key"  # Optional
export OPARL_TIMEOUT="30.0"
export OPARL_LOG_LEVEL="INFO"
export OPARL_SERVER_NAME="OParl MCP Server"

Programmatic Configuration

from oparl_mcp import OParlConfig, OParlMCPServer

# Create configuration
config = OParlConfig(
    base_url="https://oparl.muenchen.de",
    api_key="your-munich-api-key",
    timeout=60.0,
    server_name="Munich OParl Server"
)

# Create and run server
server = OParlMCPServer(config)
server.run()

🌍 OParl Implementations

The server works with various OParl implementations:

Implementation URL Description
Generic OParl API https://api.oparl.org Standard OParl implementation
Munich City Council https://oparl.muenchen.de Munich parliamentary data
Cologne City Council https://oparl.koeln.de Cologne parliamentary data
Hamburg Parliament https://oparl.hamburg.de Hamburg parliamentary data

Each implementation may have different:

  • Authentication requirements
  • Available data
  • API endpoints
  • Rate limits

🐳 Docker

Using Docker Compose

  1. Create environment file

    cp .env.example .env
    # Edit .env with your configuration
    
  2. Run with Docker Compose

    docker-compose -f docker/docker-compose.yml up -d
    

Using Docker directly

# Build the image
docker build -f docker/Dockerfile -t oparl-mcp-server .

# Run the container
docker run -p 8000:8000 \
  -e OPARL_BASE_URL=https://api.oparl.org \
  -e OPARL_API_KEY=your-key \
  oparl-mcp-server

📖 Usage Examples

Basic MCP Client Usage

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async def main():
    async with stdio_client(StdioServerParameters(
        command="python",
        args=["-m", "oparl_mcp.server"]
    )) as (read, write):
        async with ClientSession(read, write) as session:
            # List all meetings
            meetings = await session.list_resources()
            print(f"Found {len(meetings)} resources")

            # Get specific meeting
            meeting = await session.read_resource("oparl_meeting_123")
            print(f"Meeting: {meeting['name']}")

Advanced Configuration

from oparl_mcp import OParlMCPServer, OParlConfig

# Custom configuration for Munich
config = OParlConfig(
    base_url="https://oparl.muenchen.de",
    api_key="your-munich-api-key",
    timeout=45.0,
    server_name="Munich OParl MCP Server"
)

server = OParlMCPServer(config)
info = server.get_server_info()
print(f"Server: {info['name']}")
print(f"Features: {info['features']}")

🧪 Testing

Run the comprehensive test suite:

# Run all tests
pytest

# Run with coverage
pytest --cov=oparl_mcp --cov-report=html

# Run specific test file
pytest tests/test_server.py

# Run integration tests
python test_integration.py

📚 Documentation

Comprehensive documentation is available at https://jtwolfe.github.io/oparl-mcp-server/:

🔧 MCP Components

Resources

  • System Information: Root system data and metadata
  • Body Collections: Lists of parliamentary bodies
  • Meeting Schedules: Upcoming and past meetings
  • Document Collections: Papers and reports
  • Person Profiles: Elected officials and staff

Resource Templates

  • Individual Objects: Specific meetings, people, papers, etc.
  • Parameterized Access: Dynamic resource access with IDs
  • Structured Data: Consistent data format across all objects

Tools

  • Search Operations: Find specific data across the system
  • Filter Operations: Filter data by various criteria
  • Export Operations: Export data in different formats

🏗️ Architecture

The server uses FastMCP to transform the OParl API into MCP-compatible components:

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   AI Model      │    │   MCP Client    │    │   MCP Server    │
│                 │◄──►│                 │◄──►│   (FastMCP)     │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                                                       │
                                                       ▼
                                               ┌─────────────────┐
                                               │   OParl API     │
                                               │   (HTTP/REST)   │
                                               └─────────────────┘

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/new-feature
  3. Install development dependencies: pip install -r requirements-dev.txt
  4. Make your changes
  5. Add tests for new functionality
  6. Run the test suite: pytest
  7. Submit a pull request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support

🔗 Related Projects


<div align="center">

Made with ❤️ for open government and AI accessibility

GitHub stars GitHub forks

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选