OpenAI Assistant MCP Server

OpenAI Assistant MCP Server

Enables interaction with OpenAI's Chat Completion and Assistants APIs, supporting assistant management, file operations, and direct queries to GPT models through standardized MCP tools.

Category
访问服务器

README

MCP Server for OpenAI

This project provides a server compliant with the Machine-to-Machine Communications Protocol (MCP) that acts as a bridge to various OpenAI API functionalities. It allows MCP clients to interact with OpenAI's Chat Completion and Assistants APIs through a standardized set of tools.

Features

The server exposes several tools to interact with the OpenAI API:

  • Chat Completion: Ask a direct question to a specified model (gpt-4, gpt-3.5-turbo).
  • Assistant Management: Create, list, retrieve, update, and delete assistants.
  • File Management: Upload, list, and delete files associated with assistants.
  • Tool Management: Enable or disable tools for assistants, such as file_search.

Installation

To install the necessary dependencies, navigate to the project root and run:

pip install .

This will install all the packages defined in pyproject.toml, including mcp, openai, and click.

Usage

To start the server, you need to provide your OpenAI API key. You can do this by setting an environment variable or by passing it as a command-line argument.

Using an environment variable:

export OPENAI_API_KEY='your-api-key-here'
mcp-server-openai

Using a command-line argument:

mcp-server-openai --openai-api-key 'your-api-key-here'

The server will start and listen for MCP messages over stdio.

Usage in Cursor

To configure this server in an MCP client like Cursor, use the following configuration. Replace "LOCAL PATH" with the absolute path to this project's directory and "OPENAI API KEY" with your actual key.

{
  "mcpServers": {
    "openai-server": {
      "command": "mcp-server-openai",
      "args": [],
      "env": {
        "PYTHONPATH": "LOCAL PATH",
        "OPENAI_API_KEY": "OPENAI API KEY"
      }
    }
  }
}

Available Tools

Here is a detailed list of the tools exposed by the server:

Tool Description Parameters
ask-openai Ask a direct question. query (string), model (enum: gpt-4.1, gpt-4.1-mini, gpt-4o, etc.), temperature (number), max_tokens (integer)
list-assistants List all available assistants. None
retrieve-assistant Retrieve an assistant by its ID. assistant_id (string)
create-assistant Create a new assistant. name (string), instructions (string), model (string), temperature (number), file_ids (array of strings), enable_file_search (boolean)
update-assistant Update an existing assistant. assistant_id (string), name (string, optional), instructions (string, optional), model (string, optional), temperature (number, optional), file_ids (array of strings, optional), enable_file_search (boolean, optional)
delete-assistant Delete an assistant by its ID. assistant_id (string)
upload-file Upload a file for use with assistants. file_path (string)
list-files List all files available for assistants. None
delete-file Delete a file by its ID. file_id (string)

Model Pricing

Below is an estimated pricing table for some of the models available through this server. Prices are per 1 million tokens. Please verify the latest prices on the official OpenAI pricing page, as they can change.

Model Input Price / 1M tokens Output Price / 1M tokens
gpt-4o $5.00 $15.00
gpt-4o-mini $0.15 $0.60
gpt-4-turbo $10.00 $30.00
gpt-3.5-turbo $0.50 $1.50

Development

To contribute to this project, clone the repository and install it in editable mode:

git clone https://github.com/snilld-ai/openai-assistant-mcp
cd openai-assistant-mcp
pip install -e .

Testing

The project includes a basic test file to verify the connection to the OpenAI API. To run the tests, use pytest:

pytest

Make sure you have your OPENAI_API_KEY environment variable set.

License

This project is licensed under the MIT License. See the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选