
OpenAI Image Generation MCP Server
Provides tools for generating and editing images using OpenAI's gpt-image-1 model via an MCP interface, enabling AI assistants to create and modify images based on text prompts.
README
OpenAI Image Generation MCP Server
This project implements an MCP (Model Context Protocol) server that provides tools for generating and editing images using OpenAI's gpt-image-1
model via the official Python SDK.
Features
This MCP server provides the following tools:
-
generate_image
: Generates an image using OpenAI'sgpt-image-1
model based on a text prompt and saves it.- Input Schema:
{ "type": "object", "properties": { "prompt": { "type": "string", "description": "The text description of the desired image(s)." }, "model": { "type": "string", "default": "gpt-image-1", "description": "The model to use (currently 'gpt-image-1')." }, "n": { "type": ["integer", "null"], "default": 1, "description": "The number of images to generate (Default: 1)." }, "size": { "type": ["string", "null"], "enum": ["1024x1024", "1536x1024", "1024x1536", "auto"], "default": "auto", "description": "Image dimensions ('1024x1024', '1536x1024', '1024x1536', 'auto'). Default: 'auto'." }, "quality": { "type": ["string", "null"], "enum": ["low", "medium", "high", "auto"], "default": "auto", "description": "Rendering quality ('low', 'medium', 'high', 'auto'). Default: 'auto'." }, "user": { "type": ["string", "null"], "default": null, "description": "An optional unique identifier representing your end-user." }, "save_filename": { "type": ["string", "null"], "default": null, "description": "Optional filename (without extension). If None, a default name based on the prompt and timestamp is used." } }, "required": ["prompt"] }
- Output:
{"status": "success", "saved_path": "path/to/image.png"}
or error dictionary.
- Input Schema:
-
edit_image
: Edits an image or creates variations using OpenAI'sgpt-image-1
model and saves it. Can use multiple input images as reference or perform inpainting with a mask.- Input Schema:
{ "type": "object", "properties": { "prompt": { "type": "string", "description": "The text description of the desired final image or edit." }, "image_paths": { "type": "array", "items": { "type": "string" }, "description": "A list of file paths to the input image(s). Must be PNG. < 25MB." }, "mask_path": { "type": ["string", "null"], "default": null, "description": "Optional file path to the mask image (PNG with alpha channel) for inpainting. Must be same size as input image(s). < 25MB." }, "model": { "type": "string", "default": "gpt-image-1", "description": "The model to use (currently 'gpt-image-1')." }, "n": { "type": ["integer", "null"], "default": 1, "description": "The number of images to generate (Default: 1)." }, "size": { "type": ["string", "null"], "enum": ["1024x1024", "1536x1024", "1024x1536", "auto"], "default": "auto", "description": "Image dimensions ('1024x1024', '1536x1024', '1024x1536', 'auto'). Default: 'auto'." }, "quality": { "type": ["string", "null"], "enum": ["low", "medium", "high", "auto"], "default": "auto", "description": "Rendering quality ('low', 'medium', 'high', 'auto'). Default: 'auto'." }, "user": { "type": ["string", "null"], "default": null, "description": "An optional unique identifier representing your end-user." }, "save_filename": { "type": ["string", "null"], "default": null, "description": "Optional filename (without extension). If None, a default name based on the prompt and timestamp is used." } }, "required": ["prompt", "image_paths"] }
- Output:
{"status": "success", "saved_path": "path/to/image.png"}
or error dictionary.
- Input Schema:
Prerequisites
- Python (3.8 or later recommended)
- pip (Python package installer)
- An OpenAI API Key (set directly in the script or via the
OPENAI_API_KEY
environment variable - using environment variables is strongly recommended for security). - An MCP client environment (like the one used by Cline) capable of managing and launching MCP servers.
Installation
- Clone the repository:
git clone https://github.com/IncomeStreamSurfer/chatgpt-native-image-gen-mcp.git cd chatgpt-native-image-gen-mcp
- Set up a virtual environment (Recommended):
python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate`
- Install dependencies:
pip install -r requirements.txt
- (Optional but Recommended) Set Environment Variable:
Set the
OPENAI_API_KEY
environment variable with your OpenAI key instead of hardcoding it in the script. How you set this depends on your operating system.
Configuration (for Cline MCP Client)
To make this server available to your AI assistant (like Cline), add its configuration to your MCP settings file (e.g., cline_mcp_settings.json
).
Find the mcpServers
object in your settings file and add the following entry:
{
"mcpServers": {
// ... other server configurations ...
"openai-image-gen-mcp": {
"autoApprove": [
"generate_image",
"edit_image"
],
"disabled": false,
"timeout": 180, // Increased timeout for potentially long image generation
"command": "python", // Or path to python executable if not in PATH
"args": [
// IMPORTANT: Replace this path with the actual absolute path
// to the openai_image_mcp.py file on your system
"C:/path/to/your/cloned/repo/chatgpt-native-image-gen-mcp/openai_image_mcp.py"
],
"env": {
// If using environment variables for the API key:
// "OPENAI_API_KEY": "YOUR_API_KEY_HERE"
},
"transportType": "stdio"
}
// ... other server configurations ...
}
}
Important: Replace C:/path/to/your/cloned/repo/
with the correct absolute path to where you cloned this repository on your machine. Ensure the path separator is correct for your operating system (e.g., use backslashes \
on Windows). If you set the API key via environment variable, you can remove it from the script and potentially add it to the env
section here if your MCP client supports it.
Running the Server
You don't typically need to run the server manually. The MCP client (like Cline) will automatically start the server using the command
and args
specified in the configuration file when one of its tools is called for the first time.
If you want to test it manually (ensure dependencies are installed and API key is available):
python openai_image_mcp.py
Usage
The AI assistant interacts with the server using the generate_image
and edit_image
tools. Images are saved within an ai-images
subdirectory created where the openai_image_mcp.py
script is located. The tools return the absolute path to the saved image upon success.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。