openapi-mcp-proxy
An MCP server that provides tools for exploring large OpenAPI schemas without loading entire schemas into LLM context. Perfect for discovering and analyzing endpoints, data models, and API structure efficiently.
Tools
add_api
Add a new API configuration with name, URL and optional description
list_saved_apis
List all saved API configurations
remove_api
Remove a saved API configuration
get_api_info
Get general information about an API
list_endpoints
List all endpoints in an API
search_endpoints
Search endpoints by query in path, description, or tags
get_endpoint_details
Get detailed information about a specific endpoint
list_models
List all data models in an API
get_model_schema
Get detailed schema for a specific model
README
OpenAPI MCP Server
An MCP server that provides tools for exploring large OpenAPI schemas without loading entire schemas into LLM context. Perfect for discovering and analyzing endpoints, data models, and API structure efficiently.
Features
- API Configuration Management: Save and manage multiple API configurations with authentication headers if needed
- Schema Caching: Automatic caching of OpenAPI schemas to avoid repeated downloads
- Endpoint Discovery: List and search through API endpoints
- Pagination Support: Handle large APIs efficiently with configurable page sizes
- Detailed Schema Exploration: Get comprehensive information about endpoints and data models
- Efficient Context Usage: Explore large APIs without overwhelming LLM context windows
<div align="center">

</div>
Prerequisites
- Python 3.13+: The server requires Python 3.13 or later
- uv: Fast Python package installer and resolver (installation guide)
- MCP-compatible client: Claude Desktop, Claude Code CLI, Cursor, or other MCP clients
Installing uv
macOS/Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh
Using pip:
pip install uv
Installation
- Clone the repository:
git clone https://github.com/nyudenkov/openapi-mcp-proxy.git
cd openapi-mcp-proxy
- Install dependencies:
uv sync
- Verify installation:
# Test that the server starts correctly
uv run python main.py
The server should start without errors.
Usage
Running the Server
uv run python main.py
The server runs using stdio and integrates with MCP-compatible LLM clients.
Available Tools
API Management
-
add_api: Add a new API configuration with name, URL and optional descriptionname(required): Short name for the APIurl(required): URL to the OpenAPI scheme (yaml/json)description(optional): Optional descriptionheaders(optional): Optional HTTP headers for authentication (e.g., {'Authorization': 'Bearer token', 'X-API-Key': 'key'})
-
list_saved_apis: List all saved API configurations -
remove_api: Remove a saved API configuration
API Exploration
-
get_api_info: Get general information about an API -
list_endpoints: List all endpoints in an API with pagination and filtering -
search_endpoints: Search endpoints by query with pagination and filtering -
get_endpoint_details: Get detailed information about a specific endpoint -
list_models: List all data models in an API with pagination and filtering -
get_model_schema: Get detailed schema for a specific model
Tools Capabilities
Pagination
All listing tools (list_endpoints, search_endpoints, list_models) support pagination to handle large APIs efficiently:
- Default page size: 50 items
- Responses include navigation information (current page, total pages, has next/previous)
Advanced Filtering
Tools are capable to filter results to find exactly what you need:
Endpoint Filtering:
- HTTP methods (GET, POST, PUT, DELETE, etc.)
- Tags (include/exclude specific tags)
- Authentication requirements
- Deprecation status
Model Filtering:
- Model types (object, array, string, etc.)
- Property count (min/max number of properties)
- Required fields presence
- Tags (include/exclude specific tags)
Configuration
API configurations are automatically saved to api_configs.json in the working directory. The file structure:
{
"apis": {
"api-name": {
"name": "some-project-local-backend",
"url": "http://127.0.0.1:8000/openapi.json",
"description": "Optional description for some cool project local backend scheme"
},
"api-name": {
"name": "stripe-yaml",
"url": "https://raw.githubusercontent.com/stripe/openapi/refs/heads/master/openapi/spec3.yaml",
"description": "Stripe YAML OpenAPI scheme"
}
}
}
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。